Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie blendet das Gehirn Störungen aus?

03.07.2014

Wie schafft es unser Gehirn, Störreize zu ignorieren und aus einer Vielzahl an Informationen die relevanten herauszufiltern?

Dieser Frage sind zwei Neurowissenschaftler der Charité − Universitätsmedizin Berlin und der Eberhard Karls Universität Tübingen in einer experimentellen Studie nachgegangen. Die Ergebnisse der Studie sind in der aktuellen Ausgabe des Fachjournals Neuron* veröffentlicht.

Täglich ist unser Gehirn einer Flut von wichtigen und unwichtigen Reizen ausgesetzt. Dennoch sind wir in der Lage, aus der Masse an Informationen, diejenigen herauszufiltern, die für uns relevant sind.

Welche Mechanismen diesen Filterungsprozessen zugrunde liegen, untersuchten Dr. Simon Jacob von der Klinik für Psychiatrie und Psychotherapie am Campus Charité Mitte und Prof. Dr. Andreas Nieder von der Fakultät für Biologie der Eberhard Karls Universität Tübingen an Rhesusaffen. Die Tiere sollten sich eine bestimmte Anzahl an Punkten in einem Musterbild merken. In einer sich anschließenden Gedächtnisphase wurde ein Störreiz gezeigt. Danach sollten sie das Musterbild wiedererkennen.

Während die Rhesusaffen die Aufgabe durchführten, wurde die elektrische Aktivität einzelner Nervenzellen im Stirnlappen und im Scheitellappen gemessen, zwei für das Arbeitsgedächtnis wesentliche Regionen im Großhirn. Der Stirnlappen ist Sitz komplexer kognitiver Funktionen, während der Scheitellappen unter anderem eine wichtige Rolle bei der Verarbeitung sensorischer Informationen spielt.

Die Forschungsergebnisse zeigen, dass die Nervenzellen im Stirnlappen zwar durch den Störreiz aktiviert werden, nach Ausschalten des störenden Reizes jedoch wieder das im Gedächtnis gespeicherte Musterbild darstellen. Demgegenüber wurden die Nervenzellen im Scheitellappen durch den Störreiz überhaupt nicht aktiviert.

„Die Studie hilft zu erklären, warum das Arbeitsgedächtnis bei vielen neurologischen und psychiatrischen Erkrankungen gestört ist“, sagt Dr. Jacob von der Charité. Weiterhin erklärt er: „Verschiedene Hirnareale scheinen bei der Ausblendung eines störenden Reizes unterschiedliche Strategien zu verwenden. Während Nervenzellen im Scheitellappen den Störreiz einfach unterdrücken, lassen sich die Zellen im Stirnlappen kurzzeitig ablenken, um aber sofort danach die eigentlich wichtige Gedächtnisinformation wieder herzustellen.“

Prof. Andreas Nieder fügt hinzu: „Uns hat vor allem die unterschiedliche Anfälligkeit der beiden Hirnareale gegenüber Störreizen überrascht. Bisher war man davon ausgegangen, dass der Stirnlappen alle Arten von Störreizen filtert, während der Scheitellappen sensibler für Störungen ist. Unsere Ergebnisse fordern ein Umdenken hinsichtlich der Beiträge und Strategien der jeweiligen Hirnareale während Arbeitsgedächtnisaufgaben.”

*Jacob S, Nieder A. Complementary roles for primate frontal and parietal cortex in guarding working memory from distractor stimuli. Neuron. 2014 July 02.

Dr. Simon Jacob
Klinik für Psychiatrie und Psychotherapie
Campus Charité Mitte
Charité – Universitätsmedizin Berlin
t: +49 30 450 517 327
E-Mail: simon.jacob@charite.de

Weitere Informationen:

http://www.charite.de/
http://psy-ccm.charite.de/

Dr. Julia Biederlack | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie