Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie biologische Vielfalt das Ohr fit macht

28.07.2016

Göttinger Hörforschung mit neuen Erkenntnissen: Das Ohr setzt Synapsen mit verschiedenen Eigenschaften ein, um unterschiedlich lauten Schall zu verarbeiten. Forschungsergebnisse veröffentlicht in der Fachzeitschrift „Proceedings of the National Academy of Sciences“

Der menschliche Hörsinn verarbeitet einen immensen Bereich an Lautstärken. Wie schafft es das Ohr, etwa über eine Million Schalldruck-Variationen zu verarbeiten? Dieser Frage sind Wissenschaftler des Instituts für Auditorische Neurowissenschaften der Universitätsmedizin Göttingen (UMG) und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen unter der Leitung von Prof. Dr. Tobias Moser nachgegangen.


Ca2+-Signale von Haarzellsynapsen der Maus.

Abb.: Thomas Frank

Ihre Forschungsergebnisse erklären, wie synaptische Vielfalt dem Ohr hilft, aus einem gemeinsamen Rezeptorpotenzial der Haarzelle komplementäre neurale Erregungsmuster im Hörnerv zu erzeugen. Das Forscherteam hat unter anderem herausgefunden, dass eine molekular regulierte synaptische Vielfalt einen Schlüsselmechanismus für die Verarbeitung des breiten Schalldruckbereichs darstellt. Dabei übernehmen die Haarsinneszellen offenbar die Rolle eines „Dirigenten“, während ihre strukturell und funktionell verschiedenen Synapsen entsprechend ihrer Eigenschaften „musizieren“.

Dies führt dazu, dass quasi von einem Gesamtabbild des Schalls in den Haarsinneszellen ein komplementäres Aktivitätsmuster der Hörnervenfasern entsteht, das vom Gehirn „ausgelesen“ wird. Die Ergebnisse sind in der Online-Ausgabe der Fachzeitschrift „Proceedings of the National Academy of Sciences“ (PNAS) veröffentlicht.

Die Forschung wurde durch die Deutsche Forschungsgemeinschaft über den Sonderforschungsbereich SFB 889 „Zelluläre Mechanismen sensorischer Verarbeitung" und das Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) sowie durch das Bundesministerium für Bildung und Forschung über das Bernstein Center for Computational Neuroscience (BCCN) gefördert.

Originalveröffentlichung:
Ohn TZ, Rutherford MA, Jing Z, Jung SY, Duque-Afonso CJ, Hoch G, Picher MM, Scharinger A, Strenzke N, Moser T (2016) Hair cells employ active zones with different voltage-dependence of Ca2+-influx to decompose sounds into complementary neural codes. PNAS, online veröffentlicht, 26.07.2016. doi: 10.1073/pnas.1605737113

In unserem Innenohr werden unermüdlich die vom Schall bedingten mechanischen Schwingungen in elektrische Signale im Hörnerv umgewandelt. Jede der mechanisch empfindlichen Haarsinneszellen gibt dabei die Information durch Freisetzung des Botenstoffs Glutamat an rund ein Dutzend Hörnervenfasern weiter. Während das schallbedingte Signal in der Haarsinneszelle den gesamten Lautstärkebereich abbildet, verändert sich die Aktivität jeder Hörnervenfaser jedoch nur über einen Teil dieses Bereichs.

„Es scheint, als bestünde im Hörnerv eine Arbeitsteilung. Dabei bilden die Hörnervenfasern nur in der Gesamtheit den vollen Lautstärkebereich ab. Manche Nervenfasern reagieren schon auf leise Töne, andere werden erst bei lauten Tönen aktiv, bei denen die ‚empfindlichen‘ Fasern bereits maximal ‚feuern’. Synaptische Vielfalt erscheint als wahrscheinlichste Ursache für diese Arbeitsaufteilung“, sagt Prof. Dr. Tobias Moser, Direktor des Instituts für Auditorische Neurowissenschaften an der UMG und Senior-Autor der Publikation.

Erste Indizien für eine solche Annahme hatte das Göttinger Forscherteam bereits 2009 gefunden. Damals entdeckten sie, dass sich die Synapsen einer Haarzelle in ihren Kalzium(Ca2+)-Signalen unterscheiden. Prof. Moser und seine Kollegen haben nun im Innenohr von Mäusen untersucht, wie die Haarzellen diese synaptische Vielfalt bewerkstelligen.

FORSCHUNGSERGEBNISSE IM DETAIL

Während der mechanischen Reizung der Haarsinneszelle verändert sich die elektrische Spannung über ihrer Zellmembran, das sogenannte Rezeptorpotenzial, – und zwar umso mehr, je lauter das Signal ist. Diese Spannungsänderung kann vermutlich etwa 40 Millivolt überspannen und öffnet Kalziumkanäle an den aktiven Zonen der Transmitterfreisetzung. Das einströmende Kalzium triggert dann die Freisetzung des Botenstoffs Glutamat, der die synaptisch angeschlossene Hörnervenfaser aktiviert und so das Gehirn über ein Schallsignal informiert. Die Wissenschaftler entdeckten, dass der Einstrom von Kalzium-Ionen an den Synapsen unterschiedlich auf die anliegende Membranspannung, also letztlich auf Lautstärke reagiert. Der Unterschied der Spannungsabhängigkeit betrug bis zu 20 Millivolt. Eine Reihe verschiedener Experimente brachte weitere Erkenntnisse und die Wissenschaftler zu dem Schluss: Die Spannungsabhängigkeit des Kalzium-Ionen-Einstroms in der aktiven Zone einer Haarzellsynapse hat eine zentrale Bedeutung für die Antworteigenschaften von Hörnervenfasern.

Interessanterweise hing die Spannungsabhängigkeit des Ca2+-Einstroms von der Position der Synapse innerhalb der Haarzelle ab: So aktivieren Synapsen, die vom Zentrum der Hörschnecke wegweisen, ihren Ca2+-Einstrom bereits bei schwächerer Reizung. Dies erlaubte den Wissenschaftlern, einen Bezug zu einer klassischen Beobachtung der Hörphysiologie herzustellen: Danach treiben eben diese Synapsen die besonders schallempfindlichen Hörnervenfasern an. Mit ihren jetzt veröffentlichten Forschungserkenntnissen präsentiert die Göttinger Hörforschung eine biologische Erklärungsmöglichkeit für dieses Phänomen.

An der molekularen Regulation einer solchen räumlichen Ordnung der synaptischen Eigenschaften innerhalb der Haarsinneszelle ist offenbar das Protein GIPC3 beteiligt, das bei genetischem Defekt zu menschlicher Schwerhörigkeit führt. In Mäusen, denen das intakte GIPC3 fehlt, fanden die Wissenschaftler eine veränderte räumliche Ordnung, eine Aktivierung des Ca2+-Einstroms bei schwächeren Reizen und ein entsprechend verändertes Antwortverhalten der Hörnervenfasern.

WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen, Georg-August-Universität
Prof. Dr. Tobias Moser
Institut für Auditorische Neurowissenschaften und InnenOhrLabor
Telefon 0551 / 39-22837
Email: tmoser@gwdg.de


www.auditory-neuroscience.uni-goettingen.de
www.mpibpc.mpg.de/14722384/moser
www.sfb889.uni-goettingen.de
www.bccn-goettingen.de
http://www.cnmpb.de/index.php

Stefan Weller | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften