Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie biologische Vielfalt das Ohr fit macht

28.07.2016

Göttinger Hörforschung mit neuen Erkenntnissen: Das Ohr setzt Synapsen mit verschiedenen Eigenschaften ein, um unterschiedlich lauten Schall zu verarbeiten. Forschungsergebnisse veröffentlicht in der Fachzeitschrift „Proceedings of the National Academy of Sciences“

Der menschliche Hörsinn verarbeitet einen immensen Bereich an Lautstärken. Wie schafft es das Ohr, etwa über eine Million Schalldruck-Variationen zu verarbeiten? Dieser Frage sind Wissenschaftler des Instituts für Auditorische Neurowissenschaften der Universitätsmedizin Göttingen (UMG) und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen unter der Leitung von Prof. Dr. Tobias Moser nachgegangen.


Ca2+-Signale von Haarzellsynapsen der Maus.

Abb.: Thomas Frank

Ihre Forschungsergebnisse erklären, wie synaptische Vielfalt dem Ohr hilft, aus einem gemeinsamen Rezeptorpotenzial der Haarzelle komplementäre neurale Erregungsmuster im Hörnerv zu erzeugen. Das Forscherteam hat unter anderem herausgefunden, dass eine molekular regulierte synaptische Vielfalt einen Schlüsselmechanismus für die Verarbeitung des breiten Schalldruckbereichs darstellt. Dabei übernehmen die Haarsinneszellen offenbar die Rolle eines „Dirigenten“, während ihre strukturell und funktionell verschiedenen Synapsen entsprechend ihrer Eigenschaften „musizieren“.

Dies führt dazu, dass quasi von einem Gesamtabbild des Schalls in den Haarsinneszellen ein komplementäres Aktivitätsmuster der Hörnervenfasern entsteht, das vom Gehirn „ausgelesen“ wird. Die Ergebnisse sind in der Online-Ausgabe der Fachzeitschrift „Proceedings of the National Academy of Sciences“ (PNAS) veröffentlicht.

Die Forschung wurde durch die Deutsche Forschungsgemeinschaft über den Sonderforschungsbereich SFB 889 „Zelluläre Mechanismen sensorischer Verarbeitung" und das Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) sowie durch das Bundesministerium für Bildung und Forschung über das Bernstein Center for Computational Neuroscience (BCCN) gefördert.

Originalveröffentlichung:
Ohn TZ, Rutherford MA, Jing Z, Jung SY, Duque-Afonso CJ, Hoch G, Picher MM, Scharinger A, Strenzke N, Moser T (2016) Hair cells employ active zones with different voltage-dependence of Ca2+-influx to decompose sounds into complementary neural codes. PNAS, online veröffentlicht, 26.07.2016. doi: 10.1073/pnas.1605737113

In unserem Innenohr werden unermüdlich die vom Schall bedingten mechanischen Schwingungen in elektrische Signale im Hörnerv umgewandelt. Jede der mechanisch empfindlichen Haarsinneszellen gibt dabei die Information durch Freisetzung des Botenstoffs Glutamat an rund ein Dutzend Hörnervenfasern weiter. Während das schallbedingte Signal in der Haarsinneszelle den gesamten Lautstärkebereich abbildet, verändert sich die Aktivität jeder Hörnervenfaser jedoch nur über einen Teil dieses Bereichs.

„Es scheint, als bestünde im Hörnerv eine Arbeitsteilung. Dabei bilden die Hörnervenfasern nur in der Gesamtheit den vollen Lautstärkebereich ab. Manche Nervenfasern reagieren schon auf leise Töne, andere werden erst bei lauten Tönen aktiv, bei denen die ‚empfindlichen‘ Fasern bereits maximal ‚feuern’. Synaptische Vielfalt erscheint als wahrscheinlichste Ursache für diese Arbeitsaufteilung“, sagt Prof. Dr. Tobias Moser, Direktor des Instituts für Auditorische Neurowissenschaften an der UMG und Senior-Autor der Publikation.

Erste Indizien für eine solche Annahme hatte das Göttinger Forscherteam bereits 2009 gefunden. Damals entdeckten sie, dass sich die Synapsen einer Haarzelle in ihren Kalzium(Ca2+)-Signalen unterscheiden. Prof. Moser und seine Kollegen haben nun im Innenohr von Mäusen untersucht, wie die Haarzellen diese synaptische Vielfalt bewerkstelligen.

FORSCHUNGSERGEBNISSE IM DETAIL

Während der mechanischen Reizung der Haarsinneszelle verändert sich die elektrische Spannung über ihrer Zellmembran, das sogenannte Rezeptorpotenzial, – und zwar umso mehr, je lauter das Signal ist. Diese Spannungsänderung kann vermutlich etwa 40 Millivolt überspannen und öffnet Kalziumkanäle an den aktiven Zonen der Transmitterfreisetzung. Das einströmende Kalzium triggert dann die Freisetzung des Botenstoffs Glutamat, der die synaptisch angeschlossene Hörnervenfaser aktiviert und so das Gehirn über ein Schallsignal informiert. Die Wissenschaftler entdeckten, dass der Einstrom von Kalzium-Ionen an den Synapsen unterschiedlich auf die anliegende Membranspannung, also letztlich auf Lautstärke reagiert. Der Unterschied der Spannungsabhängigkeit betrug bis zu 20 Millivolt. Eine Reihe verschiedener Experimente brachte weitere Erkenntnisse und die Wissenschaftler zu dem Schluss: Die Spannungsabhängigkeit des Kalzium-Ionen-Einstroms in der aktiven Zone einer Haarzellsynapse hat eine zentrale Bedeutung für die Antworteigenschaften von Hörnervenfasern.

Interessanterweise hing die Spannungsabhängigkeit des Ca2+-Einstroms von der Position der Synapse innerhalb der Haarzelle ab: So aktivieren Synapsen, die vom Zentrum der Hörschnecke wegweisen, ihren Ca2+-Einstrom bereits bei schwächerer Reizung. Dies erlaubte den Wissenschaftlern, einen Bezug zu einer klassischen Beobachtung der Hörphysiologie herzustellen: Danach treiben eben diese Synapsen die besonders schallempfindlichen Hörnervenfasern an. Mit ihren jetzt veröffentlichten Forschungserkenntnissen präsentiert die Göttinger Hörforschung eine biologische Erklärungsmöglichkeit für dieses Phänomen.

An der molekularen Regulation einer solchen räumlichen Ordnung der synaptischen Eigenschaften innerhalb der Haarsinneszelle ist offenbar das Protein GIPC3 beteiligt, das bei genetischem Defekt zu menschlicher Schwerhörigkeit führt. In Mäusen, denen das intakte GIPC3 fehlt, fanden die Wissenschaftler eine veränderte räumliche Ordnung, eine Aktivierung des Ca2+-Einstroms bei schwächeren Reizen und ein entsprechend verändertes Antwortverhalten der Hörnervenfasern.

WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen, Georg-August-Universität
Prof. Dr. Tobias Moser
Institut für Auditorische Neurowissenschaften und InnenOhrLabor
Telefon 0551 / 39-22837
Email: tmoser@gwdg.de


www.auditory-neuroscience.uni-goettingen.de
www.mpibpc.mpg.de/14722384/moser
www.sfb889.uni-goettingen.de
www.bccn-goettingen.de
http://www.cnmpb.de/index.php

Stefan Weller | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik