Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie bilden sich automatische Verhaltensweisen?

26.08.2014

Elektrische Schwingungen in tiefer gelegenen Hirnstrukturen regeln Handlungsabläufe

Wissenschaftler der Charité − Universitätsmedizin Berlin haben jetzt herausgefunden, welche Hirnstrukturen wiederkehrende Handlungsabläufe, wie Klavierspielen oder Fahrradfahren, steuern. Zudem konnten sie die zugrundeliegenden neuronalen Prozesse entschlüsseln. Die Ergebnisse der Studie sind in der Fachzeitschrift Brain* veröffentlicht.

Ganz automatisch kann einmal gelerntes Verhalten wie Fahrradfahren oder Klavierspielen wiederholt werden. Die Fähigkeit des Menschen, eine Regelmäßigkeit in der Abfolge von Ereignissen erkennen, speichern und abrufen zu können, wird als sequentielles Verhalten bezeichnet. Dieses Verhalten besteht aus mehreren Einzelbewegungen, die in einer bestimmten zeitlichen Reihenfolge angeordnet sind und einen Anfangs- und einen Endpunkt haben.

Die Arbeitsgruppe Bewegungsstörungen von der Klinik für Neurologie am Campus Virchow-Klinikum der Charité hat am Beispiel von Parkinson-Patienten untersucht, welche neuronalen Aktivitätsmuster im Gehirn, diese wiederkehrenden Handlungsabläufe bestimmen.

Nach bisherigen Forschungserkenntnissen sind Parkinson-Patienten in ihrem sequentiellen Verhalten beeinträchtigt, was sich zum Beispiel in Starthemmungen beim Laufen äußert. Verantwortlich dafür sind tiefer gelegene Kerngebiete im Gehirn, die sogenannten Basalganglien, denn sie steuern die Bewegungsabläufe.

„In unserer Studie haben wir nun erstmals untersucht, welche neuronalen Prozesse der Basalganglien beim Menschen, Einfluss auf das sequentielle Verhalten ausüben“, sagt die Erstautorin Dr. Maria Herrojo Ruiz. Dazu wurde die neuronale Aktivität bei Parkinson-Patienten gemessen, die mit einer tiefen Hirnstimulation (THS) in einem Teilbereich der Basalganglien, dem Nucleus subthalamicus, therapiert werden.

Bei dieser Therapie werden Elektroden im Gehirn implantiert und über einen Stimulator elektrische Impulse in die Zielregion geleitet, womit die Parkinson-Symptome erfolgreich gelindert werden. Für die Studie sollten die Probanden kurze Musiksequenzen an einem Klavier einüben, während die elektrischen Signale aus dem Nucleus subthalamicus aufgezeichnet wurden.

So konnten die Wissenschaftler nachweisen, dass die Basalganglien eine entscheidende Funktion bei der Kodierung der Anfangs- und Endpunkte von Handlungsabfolgen einnehmen. Zudem zeigten sie, welche Modulation von elektrischen Schwingungen, die als Oszillationen bezeichnet werden, dafür verantwortlich ist. Bei Patienten, die die Musiksequenzen besser spielen konnten, haben vor dem ersten und letzten Element der Sequenz, die sogenannten Beta-Oszillationen, im Frequenzbereich 13-30 Hz abgenommen.

Bei Patienten, die Schwierigkeiten hatten, die Übung auszuführen, haben die Oszillationen hingegen innerhalb der Sequenz nachgelassen. Die Leiterin der Arbeitsgruppe Prof. Dr. Andrea Kühn betont: „Die Basalganglien bestimmen mit der Kodierung von Anfangs- und Endpunkten die innere Beschaffenheit der gelernten Sequenz und sind somit maßgeblich dafür verantwortlich, ob automatische Verhaltensweisen sich im Gehirn festigen. Unsere Befunde bekräftigen zudem, dass Parkinson-Patienten in ihren Bewegungsabläufen aufgrund der verstärkt auftretenden Beta-Oszillationen beeinträchtigt sind.“

* Herrojo Ruiz M, Rusconi M, Brücke C, Haynes J.-D, Schönecker T, Kühn A. A. Encoding of sequence boundaries in the subthalamic nucleus of patients with Parkinson's disease. Brain 2014 July 16. Doi: 10.1093/brain/awu191

Kontakt:

Prof. Dr. Andrea Kühn
Klinik für Neurologie mit experimenteller Neurologie
Campus Virchow-Klinikum
t: +49 30 450 660123
E-Mail: andrea.kuehn@charite.de

Weitere Informationen:

http://neurologie.charite.de/forschung/arbeitsgruppe/bewegungsstoerungen_andrea_...
http://www.kfo247.de/

Dr. Julia Biederlack | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics