Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wichtiges Überlebenssignal in aggressiven Lymphomen entdeckt

22.12.2010
Wissenschaftlern des Helmholtz Zentrums München in Zusammenarbeit mit der Charité-Universitätsmedizin Berlin ist es gelungen, einen essentiellen Baustein für das Überleben einer Untergruppe von bösartigen Lymphomen aufzudecken. In ihrer aktuellen Veröffentlichung in PNAS konnten die Forscher eine entscheidende Rolle des PI3K Signalweges in bestimmten Lymphomzellen nachweisen. Die Ergebnisse liefern somit neue potentielle Ansatzpunkte für eine Behandlung einer besonders aggressiven Untergruppe von Lymphomen.

Die beiden Arbeitsgruppen von Dr. Daniel Krappmann am Helmholtz Zentrum München und Prof. Georg Lenz an der Berliner Charité haben den PI3K-Signalweg als wichtiges Überlebenssignal in einer aggressiven Untergruppe, dem sogenannten aktivierten B-Zell (ABZ) Typ, von diffus großzelligen B-Zell-Lymphomen (DGBZL) identifiziert.


Von der Proliferationsanalyse zu Expressionsmustern: Durchflusszytometrie, Chromatinreinigung und Genexpressionsprofil von Lymphomen. Grafik: Daniel Krappmann

Es ist bekannt, dass Veränderungen im PI3K Signalweg häufig zur Tumorentstehung beitragen. Im Falle der ABZ-Lymphome konnten die Forscher zeigen, dass der PI3K-Signalweg die Aktivierung des Transkriptionsfaktors NF-kappaB steuert. NF-kappaB reguliert eine Vielzahl von Genen, die das Überleben und Wachstum der ABZ-Lymphomzellen garantieren. Die Blockade des PI3K-Signalweges führt zu einer verminderten Aktivierung von NF-kappaB und somit zum Absterben in einer Untergruppe der ABZ-Lymphomzellen. Die neuen Erkenntnisse zeigen, dass der PI3K Signalweges möglicherweise ein vielversprechendes therapeutisches Ziel für bestimmte aggressive Lymphome darstellt.

Hintergrund:

Lymphome sind bösartige Erkrankungen des lymphatischen Systems. In etwa 30-40% aller Lymphom-Patienten wird ein so genanntes diffus großzelliges B-Zell-Lymphom (DGBZL) diagnostiziert. Je nach zellulärem Ursprung können Untergruppen von DGBZL unterschieden werden, wie z. B. der „aktivierte B Zell-Typus“ (ABZ), der aufgrund besonderer Aggressivität eine sehr schlechte Prognose hat. Gesunde B-Zellen tragen Antigenrezeptoren auf ihrer Oberfläche, um Krankheitserreger zu erkennen und zu bekämpfen. Zellen der ABZ-Lymphome zeichnen sich durch chronische und pathologische Aktivierung dieser Antigenrezeptoren aus – wird der Antigenrezeptor abgeschaltet, sterben die Zellen ab. In der neuen Studie ist es gelungen einen Mechanismen aufzuklären, wie die chronische Aktivierung der Antigenrezeptoren das Überleben der ABZ-DGBZL-Zellen bewirkt.

Weitere Informationen:
Originalarbeit: Critical role of PI3K signaling for NF-κB–dependent survival in a subset of activated B-cell–like diffuse large B-cell lymphoma cells Bernhard H. Kloo, Daniel Nagel, Matthias Pfeifer, Michael Grau, Michael Düwel, Michelle Vincendeau, Bernd Dörken, Peter Lenz, Georg Lenz, and Daniel Krappmann PNAS published ahead of print December 20, 2010, doi:10.1073/pnas.1008969108. Abstract bei PNAS: http://www.pnas.org/content/early/2010/12/14/1008969108.abstract

Das Helmholtz Zentrum München ist das deutsche Forschungszentrum für Gesundheit und Umwelt. Als führendes Zentrum mit der Ausrichtung auf Environmental Health erforscht es chronische und komplexe Krankheiten, die aus dem Zusammenwirken von Umweltfaktoren und individueller genetischer Disposition entstehen. Das Helmholtz Zentrum München beschäftigt rund 1.700 Mitarbeiterinnen und Mitarbeiter. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens auf einem 50 Hektar großen Forschungscampus. Das Helmholtz Zentrum München gehört der größten deutschen Wissenschaftsorganisation, der Helmholtz-Gemeinschaft an, in der sich 16 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit insgesamt 30.000 Beschäftigten zusammengeschlossen haben – http://www.helmholtz-muenchen.de

Ansprechpartner für Medienvertreter

Sven Winkler, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Tel.: 089-3187-3946, Fax 089-3187-3324, E-Mail: presse@helmholtz-muenchen.de

Wissenschaftlicher Ansprechpartner

Dr. Daniel Krappmann, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Tel.: 089-3187-3461, Fax 089-3187-3449, E-Mail: daniel.krappmann@helmholtz-muenchen.de

Sven Winkler | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-muenchen.de/presse-und-medien/pressemitteilungen/pressemitt...

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops