Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wichtiges Transport-Protein entschlüsselt

11.02.2014
Proteine nehmen im menschlichen Körper lebenswichtige Funktionen wahr – unter anderem sitzen sie in der Zellmembran und führen Stoffe in die Zellen ein oder aus.

Solche Transport-Proteine spielen bei Krebs oder Stoffwechselkrankheiten eine Schlüsselrolle. Strukturbiologen der Universität Bern haben nun erstmals die «Architektur» eines medizinisch relevanten Transport-Proteins entschlüsselt. Dies ist ein erster Schritt, um neue Wirkstoffe zu entwickeln.


Seitenansicht des menschlichen Transporter-Helferprotein-Komplexes. Das Helferprotein ist bunt dargestellt. Bild: Dimitrios Fotiadis, NFS «TransCure», Universität Bern.

Proteine, auch bekannt als Eiweisse, funktionieren im menschlichen Körper wie Nanomaschinen – sie haben genau definierte Strukturen und arbeiten häufig mit anderen Proteinen zusammen. Eine sehr wichtige Klasse von Proteinen bilden die Transport-Proteine. Diese sitzen in der Zellmembran und sind für das Ein- und Ausschleusen von Substanzen zuständig, zum Beispiel Nährstoffe oder Abfallprodukte.

Ohne «Transporter» könnte eine Zelle keine Nahrungsmittel ins Zellinnere einschleusen und sich somit nicht ernähren und leben. Bestimmte Transporter nehmen zudem bei Krebs, verschiedenen Stoffwechselkrankheiten, Drogenabhängigkeit und viralen Infektionen eine Schlüsselrolle ein. Bisher war nur wenig über ihre Struktur bekannt.

Nun ist es einem internationalen Forscherteam unter der Leitung von Strukturbiologen vom Institut für Biochemie und Molekulare Medizin der Universität Bern und dem Nationalen Forschungsschwerpunkt «TransCure» gelungen, den Aufbau eines wichtigen Transport-Proteins zu entschlüsseln. Sie konnten dessen «Architektur» erstmals mittels aufwändiger bildgebender Verfahren und Computerberechnungen darstellen. Die Darstellung dieses Transporters bei einer hohen Auflösung kann für das Design von Wirkstoffen gegen Krebs verwendet werden. Die Studie erschien nun im Fachjournal «Proceedings of the National Academy of Sciences» (PNAS).

Transporter mit einem «Anhänger»

Das untersuchte Transport-Protein LAT2 arbeitet nicht alleine, sondern zusammen mit einem «Helferprotein» – was bei Transportern sehr ungewöhnlich ist. Beide Proteine sind fest miteinander verbunden und transportieren bestimmte Aminosäuren über die Zellmembran. Die Aminosäuren dienen als Energiequelle und Bausteine für den Aufbau von anderen Proteinen.

In bestimmten Krebszellen werden LAT-Proteine überproduziert. Eine Unterdrückung dieser Transporter kann zur Hemmung der Krebszellwucherung führen. «Zu verstehen, wie solche Transport-Proteine auf molekularer Ebene funktionieren, ist von hoher biologischer Relevanz», sagt Dimitrios Fotiadis, Leiter der Studie. Daher untersuchten die Forschenden die Struktur dieses Protein-Komplexes und stellten sie bildlich dar.

Proteine, die nur wenige Nanometer – ein Millionstel eines Millimeters – gross sind, können mithilfe hochauflösender Elektronenmikroskopie visualisiert werden. So wurde eine dreidimensionale Abbildung des Transport- und Helferproteins erstellt, indem elektronenmikroskopische Bilder, welche verschiedene Ansichten des Protein-Komplexes zeigen, zusammen mit aufwändigen Computerberechnungen verbunden wurden.

«Es ist eines unserer langfristigen und ambitionierten Ziele, mittels hochaufgelöster Strukturen und Wirkstoffdesign neue Medikamente gegen Krankheiten wie Krebs zu entwickeln», sagt Fotiadis. Für die Berner Strukturbiologen, welche im Rahmen des NFS «TransCure» und in weiteren Projekten Transport-Proteine untersuchen, ist die elektronenmikroskopische Abbildung von LAT2 erst der Anfang: So arbeiten sie intensiv daran, die Architektur dieser Transport-Nanomaschine noch detaillierter zu entschlüsseln – bis hin zur atomaren Ebene.

Angaben zu Publikation:
Albert Rosell, Marcel Meury, Elena Álvarez-Marimon, Meritxell Costa, Laura Pérez-Cano, Antonio Zorzano, Juan Fernández-Recio, Manuel Palacín, and Dimitrios Fotiadis: Structural bases for the interaction and stabilization of the human amino acid transporter LAT2 with its ancillary protein 4F2hc, 10. Februar 2014, PNAS, doi/10.1073/pnas.1323779111

Nathalie Matter | Universität Bern
Weitere Informationen:
http://www.unibe.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Warum der Brennstoffzelle die Luft wegbleibt
28.03.2017 | Technische Universität Wien

nachricht Chlamydien: Wie Bakterien das Ruder übernehmen
28.03.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Warum der Brennstoffzelle die Luft wegbleibt

28.03.2017 | Biowissenschaften Chemie

Chlamydien: Wie Bakterien das Ruder übernehmen

28.03.2017 | Biowissenschaften Chemie

Sterngeburt in den Winden supermassereicher Schwarzer Löcher

28.03.2017 | Physik Astronomie