Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wichtiger Mechanismus bei der Bildung von Nervenbahnen entdeckt

16.01.2015

Forschern der Universität Leipzig ist ein entscheidender Schritt auf dem Weg zum Verständnis der Bildung von Nervenbahnen gelungen. Sie entdeckten einen Weg, bestimmte Proteine regelrecht an- und abzuschalten, die für die Sicherung von Nervenbahnen von Bedeutung sind. Ähnlich wie die einzelnen Adern von elektrischen Kabeln sind die Nervenbahnen voneinander isoliert, um Fehlfunktionen zu vermeiden.

Zuständig für die Isolierung ist eine Zellschicht, die Myelin genannt wird, und sich schützend um die Nervenbahnen wickelt. Eine gestörte Myelinisierung findet man bei Krankheiten wie der Multiplen Sklerose. Eine gerade erst in den Fokus rückende Gruppe von Rezeptoren, deren Funktion bisher im Dunkeln lag, ist dabei offenbar von entscheidender Bedeutung.

Die Erkenntnisse wurden jetzt im international renommierten Journal "Cell Reports" publiziert. Ein eigens gegründeter Forscherverbund wird sich in den kommenden drei Jahren der speziellen Rezeptorengruppe widmen.

Bei Zebrafischen wies die Forschergruppe um Dr. Ines Liebscher und Prof. Dr. Torsten Schöneberg am Institut für Biochemie der Medizinischen Fakultät nach, dass über die speziellen Rezeptormoleküle ein Signalweg manipuliert werden kann. Wird das Protein abgeschaltet, kommt es im betroffenen Organismus zu Erkrankungen des Nervensystems.

"Es geht um Rezeptoren, die ihre Signale über sogenannte G-Proteine weiterleiten, weshalb sie auch G-Protein gekoppelte Rezeptoren oder kurz GPCR - für das englische G protein-coupled receptor - genannt werden", erläutert Dr. Liebscher. GPCR vermitteln ihren Worten nach alles, was man sich im Körper vorstellen kann.

"Durch GPCR kann der Mensch sehen, sein Immunsystem steuern, den Hormonhaushalt lenken." Die große Familie der GPCR werde in fünf Subklassen unterteilt, wovon sich die Forscher die sogenannten Adhäsions-GPCR genauer anschauten. "Diese haben riesig große äußere Strukturen, den so genannten N-Terminus. In diesem Bereich gibt es Einzeldomänen, die das aneinander Kleben von Zellen oder Proteinen vermitteln", erklärt Liebscher. Wobei der Begriff des Klebens in diesem Zusammenhang die Interaktion zwischen einem Teil des Rezeptors und Proteinen beschreibt, die in der extrazellulären Matrix - also dem Raum um die Zellen - vorkommen.

Myelinscheiden wirken wie die Isolierung bei Elektrokabeln

Wie Institutsleiter Torsten Schöneberg sagt, hat ein Rezeptormolekül zwei Aufgaben: "Es muss ein bestimmtes Signal erkennen, und es muss das Signal in die Zelle hineinbringen und dort in die 'Sprache' des Stoffwechsels der Zelle übersetzen." Ines Liebscher fügt hinzu: "Für einen der Rezeptoren - GPR 126 - konnte gezeigt werden, dass er ursächlich mit dafür verantwortlich ist, dass sich Myelinscheiden um Nerven bilden." Myelinscheiden sind Biomembranen, die sich um Nervenbahnen legen, vergleichbar mit Isolierungen von Elektrokabeln. Fehlt die Isolierung, entwickelt der betroffene Organismus Störungen der Nervenreizleitung wie beispielsweise bei der Multiplen Sklerose.

"Wenn der Rezeptor komplett aus einem biologischen System herausgenommen wird, sieht man, dass die Zellen, die diese Myelinscheiden bilden, ihre Aufgabe nicht mehr wahrnehmen", beschreibt sie den Prozess. In der jetzt veröffentlichten Studie wurde gezeigt, wie diese Rezeptoren aktiviert werden können. Dabei wurde mit Zebrafischen gearbeitet. "Wenn der GPR126-Rezeptor von außen eingeschaltet wurde, konnte in Zebrafischen mit einem partiellen Rezeptordefekt die Myelinisierung von Nerven reaktiviert werden."

Durch mechanische Reize aktiviert

Anders als bei Adrenalin oder Serotonin, die direkt wirken, ist bei diesen Rezeptoren das Signal an die Zelle im Protein verpackt, beschreibt Schöneberg: "Es ist quasi in eine Box gepackt und es bedarf beispielsweise eines mechanischen Reizes, um sie zu öffnen. Dadurch wird das eigentliche Signal freigelegt und aktiviert den Rezeptor." Bei einigen Vertretern dieser Rezeptorgruppe seien sich die Wissenschaftler jetzt relativ sicher, dass sie mechano-sensitiv sind, also durch Bewegung aktiviert werden. Jedoch bleiben zahlreiche Fragen offen, unter anderem die, welche Zellbewegungen ein Signal auslösen oder ob alle Vertreter dieser Rezeptorgruppe ähnlich funktionieren.

Neuer Forschungsverbund gegründet

Dieser und anderen Aufgabenstellungen wird sich eine Forschergruppe widmen, die von den Leipziger Wissenschaftlern in Zusammenarbeit mit Kollegen aus Erlangen, Würzburg und Mainz auf die Beine gestellt wurde. Von der Deutschen Forschungsgemeinschaft (DFG) über die kommenden drei Jahre mit mehr als zwei Millionen Euro gefördert, wollen sie in acht Projekten - davon allein vier in Leipzig - der neu zu betrachtenden GPCR-Rezeptorgruppe auf die Spur kommen. Da diese Rezeptoren für sehr viele unterschiedliche Entwicklungen im Organismus verantwortlich sind, wird zukünftig auch die Entstehung zahlreicher Krankheiten besser erklärbar sein. Die Liste reicht von Tumorerkrankungen über Adipositas bis hin zu angeborenen Fehlbildungen des Gehirns. Wenn der Grund für Erkrankungen erklärt werden kann, dann ist laut Biochemiker Schöneberg der erste Schritt auf dem Weg zu einer Therapie bereits gegangen.


Link zur Fachveröffentlichung
A Tethered Agonist within the Ectodomain Activates the Adhesion G Protein-Coupled Receptors GPR126 and GPR133, DOI: http://dx.doi.org/10.1016/j.celrep.2014.11.036
Link zur Forschergruppe

Diana Smikalla | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit