Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wichtiger Mechanismus bei der Bildung von Nervenbahnen entdeckt

16.01.2015

Forschern der Universität Leipzig ist ein entscheidender Schritt auf dem Weg zum Verständnis der Bildung von Nervenbahnen gelungen. Sie entdeckten einen Weg, bestimmte Proteine regelrecht an- und abzuschalten, die für die Sicherung von Nervenbahnen von Bedeutung sind. Ähnlich wie die einzelnen Adern von elektrischen Kabeln sind die Nervenbahnen voneinander isoliert, um Fehlfunktionen zu vermeiden.

Zuständig für die Isolierung ist eine Zellschicht, die Myelin genannt wird, und sich schützend um die Nervenbahnen wickelt. Eine gestörte Myelinisierung findet man bei Krankheiten wie der Multiplen Sklerose. Eine gerade erst in den Fokus rückende Gruppe von Rezeptoren, deren Funktion bisher im Dunkeln lag, ist dabei offenbar von entscheidender Bedeutung.

Die Erkenntnisse wurden jetzt im international renommierten Journal "Cell Reports" publiziert. Ein eigens gegründeter Forscherverbund wird sich in den kommenden drei Jahren der speziellen Rezeptorengruppe widmen.

Bei Zebrafischen wies die Forschergruppe um Dr. Ines Liebscher und Prof. Dr. Torsten Schöneberg am Institut für Biochemie der Medizinischen Fakultät nach, dass über die speziellen Rezeptormoleküle ein Signalweg manipuliert werden kann. Wird das Protein abgeschaltet, kommt es im betroffenen Organismus zu Erkrankungen des Nervensystems.

"Es geht um Rezeptoren, die ihre Signale über sogenannte G-Proteine weiterleiten, weshalb sie auch G-Protein gekoppelte Rezeptoren oder kurz GPCR - für das englische G protein-coupled receptor - genannt werden", erläutert Dr. Liebscher. GPCR vermitteln ihren Worten nach alles, was man sich im Körper vorstellen kann.

"Durch GPCR kann der Mensch sehen, sein Immunsystem steuern, den Hormonhaushalt lenken." Die große Familie der GPCR werde in fünf Subklassen unterteilt, wovon sich die Forscher die sogenannten Adhäsions-GPCR genauer anschauten. "Diese haben riesig große äußere Strukturen, den so genannten N-Terminus. In diesem Bereich gibt es Einzeldomänen, die das aneinander Kleben von Zellen oder Proteinen vermitteln", erklärt Liebscher. Wobei der Begriff des Klebens in diesem Zusammenhang die Interaktion zwischen einem Teil des Rezeptors und Proteinen beschreibt, die in der extrazellulären Matrix - also dem Raum um die Zellen - vorkommen.

Myelinscheiden wirken wie die Isolierung bei Elektrokabeln

Wie Institutsleiter Torsten Schöneberg sagt, hat ein Rezeptormolekül zwei Aufgaben: "Es muss ein bestimmtes Signal erkennen, und es muss das Signal in die Zelle hineinbringen und dort in die 'Sprache' des Stoffwechsels der Zelle übersetzen." Ines Liebscher fügt hinzu: "Für einen der Rezeptoren - GPR 126 - konnte gezeigt werden, dass er ursächlich mit dafür verantwortlich ist, dass sich Myelinscheiden um Nerven bilden." Myelinscheiden sind Biomembranen, die sich um Nervenbahnen legen, vergleichbar mit Isolierungen von Elektrokabeln. Fehlt die Isolierung, entwickelt der betroffene Organismus Störungen der Nervenreizleitung wie beispielsweise bei der Multiplen Sklerose.

"Wenn der Rezeptor komplett aus einem biologischen System herausgenommen wird, sieht man, dass die Zellen, die diese Myelinscheiden bilden, ihre Aufgabe nicht mehr wahrnehmen", beschreibt sie den Prozess. In der jetzt veröffentlichten Studie wurde gezeigt, wie diese Rezeptoren aktiviert werden können. Dabei wurde mit Zebrafischen gearbeitet. "Wenn der GPR126-Rezeptor von außen eingeschaltet wurde, konnte in Zebrafischen mit einem partiellen Rezeptordefekt die Myelinisierung von Nerven reaktiviert werden."

Durch mechanische Reize aktiviert

Anders als bei Adrenalin oder Serotonin, die direkt wirken, ist bei diesen Rezeptoren das Signal an die Zelle im Protein verpackt, beschreibt Schöneberg: "Es ist quasi in eine Box gepackt und es bedarf beispielsweise eines mechanischen Reizes, um sie zu öffnen. Dadurch wird das eigentliche Signal freigelegt und aktiviert den Rezeptor." Bei einigen Vertretern dieser Rezeptorgruppe seien sich die Wissenschaftler jetzt relativ sicher, dass sie mechano-sensitiv sind, also durch Bewegung aktiviert werden. Jedoch bleiben zahlreiche Fragen offen, unter anderem die, welche Zellbewegungen ein Signal auslösen oder ob alle Vertreter dieser Rezeptorgruppe ähnlich funktionieren.

Neuer Forschungsverbund gegründet

Dieser und anderen Aufgabenstellungen wird sich eine Forschergruppe widmen, die von den Leipziger Wissenschaftlern in Zusammenarbeit mit Kollegen aus Erlangen, Würzburg und Mainz auf die Beine gestellt wurde. Von der Deutschen Forschungsgemeinschaft (DFG) über die kommenden drei Jahre mit mehr als zwei Millionen Euro gefördert, wollen sie in acht Projekten - davon allein vier in Leipzig - der neu zu betrachtenden GPCR-Rezeptorgruppe auf die Spur kommen. Da diese Rezeptoren für sehr viele unterschiedliche Entwicklungen im Organismus verantwortlich sind, wird zukünftig auch die Entstehung zahlreicher Krankheiten besser erklärbar sein. Die Liste reicht von Tumorerkrankungen über Adipositas bis hin zu angeborenen Fehlbildungen des Gehirns. Wenn der Grund für Erkrankungen erklärt werden kann, dann ist laut Biochemiker Schöneberg der erste Schritt auf dem Weg zu einer Therapie bereits gegangen.


Link zur Fachveröffentlichung
A Tethered Agonist within the Ectodomain Activates the Adhesion G Protein-Coupled Receptors GPR126 and GPR133, DOI: http://dx.doi.org/10.1016/j.celrep.2014.11.036
Link zur Forschergruppe

Diana Smikalla | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Up-Scaling: Katalysatorentwicklung im Industriemaßstab
22.11.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Ozeanversauerung schädigt Miesmuscheln im Frühstadium
22.11.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterien als Schrittmacher des Darms

22.11.2017 | Biowissenschaften Chemie

Ozeanversauerung schädigt Miesmuscheln im Frühstadium

22.11.2017 | Biowissenschaften Chemie

Die gefrorenen Küsten der Arktis: Ein Lebensraum schmilzt davon

22.11.2017 | Geowissenschaften