Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wichtiger enzymatischer Schritt der Kokain-Synthese aufgeklärt

06.06.2012
Enzymreaktion in Kokablättern erlaubt Einblick in die Evolution der Alkaloid-Synthese

Kokain gehört zu den geläufigsten Drogen weltweit. Bislang war jedoch nicht bekannt, wie Pflanzen das Alkaloid bilden. Wissenschaftler des Max-Planck-Instituts für chemische Ökologie, Jena, haben nun eine der Schlüsselreaktionen der Kokain-Biosynthese aufgeklärt.


Kokapflanze (Erythroxylum coca) und die molekulare Struktur des Kokains (grau: Kohlenstoff, blau: Stickstoff, rot: Sauerstoff, weiß: Wasserstoff). Max-Planck-Institut für chemische Ökologie/ D’Auria, Jirschitzka


Gewebeschnitt durch eine junge, noch um den jungen Spross gewickelte Blattanlage (Balken: 0,1 Millimeter). Die grün gefärbten Bereiche (Immunoblot) markieren das dort in großer Menge vorhandene Enzym MecgoR, das den vorletzten Schritt der Kokain-Biosynthese katalysiert. Max-Planck-Institut für chemische Ökologie/ D’Auria, Jirschitzka

Sie isolierten aus Blättern der südamerikanischen Kokapflanze ein Enzym, das zur Familie der Aldo-Keto-Reduktasen gehört. Dessen Funktion und molekulare Struktur eröffnet einen neuen Blick in die Evolution pflanzlicher Tropan-Alkaloid-Stoffwechselwege. (PNAS, Early Edition, 4. Juni 2012, DOI: 10.1073/pnas.1200473109)

Alkaloide begegnen dem Menschen jeden Tag

Alkaloide sind natürliche, stickstoffhaltige Verbindungen, die auf den menschlichen Organismus unterschiedlich stark wirken. Dazu gehören bekannte Substanzen wie Atropin, Koffein, Nikotin, Chinin, Morphin, Strychnin und Kokain. Das Pupillen-erweiternde Atropin und das Rauschgift Kokain zählen zur Gruppe der so genannten Tropan-Alkaloide, die sich chemisch durch zwei miteinander verbundene 5- und 7-gliedrige Ringe auszeichnen. Kokapflanzen wurden schon vor rund 8000 Jahren von südamerikanischen Völkern kultiviert, die die Kokablätter wegen ihrer stimulierenden und hungerstillenden Eigenschaft anbauten.

Im Pflanzenreich dient die Biosynthese von Tropanen und anderen alkaloiden Stoffen meist der Abwehr von Fraßfeinden und anderen Schädlingen. Sieben Pflanzenfamilien, in denen Tropan-Alkaloide vorkommen, sind bekannt, darunter die Kreuzblütler (Brassicaceae), Wolfsmilch- (Euphorbiaceae), Nachtschatten- (Solanaceae) und Rotholzgewächse (Erythroxylaceae).

Der Verwandtschaftsgrad zwischen diesen Familien ist eher klein. Man nimmt an, dass der letzte gemeinsame Vorfahre der Rotholz- und Nachschattengewächse vor rund 120 Millionen Jahren gelebt hat. Wie ähnlich sind sich die Tropan-Alkaloid-Biosynthesewege in diesen Familien? Gibt es einen ursprünglichen „Kardinalweg“, der im weiteren Verlauf der Evolution in den meisten anderen Pflanzenfamilien verloren gegangen ist? Oder wurde die Tropan-Alkaloid-Biosynthese mehrmals parallel und unabhängig voneinander erfunden?

Atropin und Kokain: zwei Tropan-Alkaloide, zwei Pflanzenarten, zwei verschiedene Enzyme

Die Kokapflanze mit dem wissenschaftlichen Namen Erythroxylum coca aus der Familie der Rotholzgewächse und die Kokainbiosynthese wurden seit rund 40 Jahren nicht mehr untersucht. Jedoch ist ein entscheidender Schritt der Biosynthese von Atropin, einem kokainverwandten Tropan-Alkaloid, das in der Tollkirsche, einem Nachtschattengewächs, vorkommt, bekannt. Zur Atropin-Biosynthese bedarf es der Umwandlung einer Ketogruppe in einen Alkoholrest, der dann im allerletzten chemischen Schritt verestert wird. Die Umwandlung der Ketogruppe wird in der Tollkirsche durch ein Enzym aus der Gruppe der Dehydrogenasen/Reduktasen (short-chain dehydrogenase/reductase − SDR) katalysiert. Zu diesen Enzymen gehören auch viele Alkohol-abbauende Dehydrogenasen in tierischen Organismen.
Um das entsprechende Enzym im Kokain-Biosyntheseweg zu finden, suchte Jan Jirschitzka, Doktorand in der Gruppe um John D’Auria, Projektleiter in der Abteilung Biochemie des Max-Planck-Instituts für chemische Ökologie, daher im Genom der Kokapflanze nach SDR-ähnlichen Gensequenzen. Diese wurden kloniert, exprimiert und auf Enzymaktivität getestet. Da hierbei nicht das Vorläufermolekül des Kokains gebildet wurde, blieb dem Wissenschaftler nur der klassische biochemische Weg: Aus Extrakten von Kokablättern reicherte er die dort enthaltene Enzymaktivität an, reinigte das entsprechende Protein und isolierte nach Teilsequenzierung des Polypeptids das dazugehörige Gen.

Kokain in jungen Blättern, Atropin in Wurzeln

„Wir erhielten zwei interessante Ergebnisse“, so Jonathan Gershenzon, Direktor am Institut. „Die zur Atropin-Synthese analoge chemische Reaktion − die Umwandlung der Ketogruppe zu einem Alkoholrest − erfolgt in Kokapflanzen durch ein ganz anderes Enzym als im Nachtschattengewächs, nämlich durch eine Aldo-Keto-Reduktase, die wir Methylecgonon-Reduktase (MecgoR) genannt haben.“ Aldo-Keto-Reduktasen sind in Pflanzen bekannt und finden sich auch in Säugetieren, Amphibien, Hefe, Einzellern und Bakterien. Sie sind beispielsweise in die Bildung von Steroidhormonen eingebunden. Und zweitens: Sowohl das MecgoR-Gen als auch das MecgoR-Enzym sind besonders aktiv in ganz jungen Blättern der Kokapflanze, jedoch nicht in Wurzeln. Atropin hingegen wird ausschließlich in der Wurzel der Tollkirsche synthetisiert und nachfolgend in die grünen Organe transportiert. Auf der Grundlage all dieser Ergebnisse folgern die Wissenschaftler, dass der Tropan-Alkaloid-Stoffwechsel in Kokapflanzen und der Tollkirsche vollkommen unabhängig voneinander entstanden sind.
Mit der Aufklärung des durch das MecgoR-Enzym katalytischen Schrittes der Kokain Synthese sind die Forscher einen enormen Schritt vorangekommen. Nun widmen sie sich unter anderem dem Speicherort des Kokains im jungen grünen Blattgewebe, wo es in einer sehr hohen Konzentration akkumuliert: Kokain kann bis zu zehn Prozent Prozent des Trockengewichts von jungen Blättern ausmachen, eine Menge, die kaum von anderen Alkaloiden in Pflanzen erreicht wird. [JWK]

Originalartikel:

Jan Jirschitzka, Gregor W. Schmidt, Michael Reichelt, Bernd Schneider, Jonathan Gershenzon, John C. D´Auria: Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae. Proceedings of the National Academy of Sciences USA, Early Edition, 4. Juni 2012, DOI: 10.1073/pnas.1200473109

Weitere Informationen von:

Dr. John C. D’Auria, dauria@ice.mpg.de, +49 3641 57 1335

Bildmaterial:

Angela Overmeyer M.A., +49 3641 57-2110, overmeyer@ice.mpg.de oder via http://www.ice.mpg.de/ext/735.html

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Weitere Informationen:
http://www.ice.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie