Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wichtiger Abstimmungsvorgang zwischen Gleichgewichtssinn und Auge verstanden

24.06.2011
Damit unser Auge ein scharfes und ruckelfreies Bild liefert, muss es eng mit dem Gleichgewichtssinn gekoppelt sein. Ist die Abstimmung gestört, sehen wir unscharf und uns wird schwindelig.

Forscher des Bernstein Zentrums München, der LMU München und des Integrierten Forschungs- und Behandlungszentrums IFB-LMU konnten nun eine wichtige Stufe des Zusammenspiels aufklären: ob Nervenzellen dieser Einheit Informationen über den Beginn oder die Dauer einer Kopfbewegung an die Augenmuskeln leiten, hängt von einem einzigen Membran-Kanaltyp und der Vernetzung der Zellen untereinander ab. Optimierte Schwindel-Therapien und Entwicklungen ruckelfreier Kamerasysteme könnten von der Forschung profitieren.

Gerade einmal drei Verarbeitungsschritte im Gehirn sind nötig, um Daten aus dem Gleichgewichtsorgan zu verarbeiten und an die Augenmuskeln zu leiten. Dadurch kann sich das Sehsystem in Sekundenbruchteilen an Kopfbewegungen anpassen. Während im ersten und letzten Schritt die Informationen vor allem von den Sensoren weg beziehungsweise an die Muskeln hingeleitet werden, findet im zweiten Schritt die entscheidende Verarbeitung der Informationen statt.

Beteiligt daran sind Nervenzellen mit ganz unterschiedlichen Eigenschaften: der eine Typ ist nur während des Startzeitpunkts einer Bewegung aktiv. Der andere Typ feuert gleichmäßig während der gesamten Bewegung. Den Grund dafür haben nun Dr. Stefan Glasauer, wissenschaftlicher Mitarbeiter am Bernstein Zentrum München und an der Ludwig-Maximilians-Universität München, und sein Doktorand Christian Rössert in Zusammenarbeit mit Professor Hans Straka, Neurobiologe an der LMU, herausgefunden. Für ihre Studien, die sie im Journal of Neuroscience* veröffentlichten, nutzten sie das bereits gut verstandene Gleichgewichtsorgan bei Grasfröschen.

Auf Grundlage experimenteller Daten erstellten die Wissenschaftler am Computer Simulationen, welche die Informationsverarbeitung der Nervenzellen nachbildeten: „In der Simulation können wir die Zellen in beliebiger Weise mit Ionenkanälen bestücken, zusammenschalten und messen“, erklärt Glasauer die Vorteile der Modelle. Und mehr noch: „Wir können den simulierten Frosch sogar hüpfen lassen, um die Datenverarbeitung zu testen“, so Glasauer. Zuerst untersuchten die Forscher in einer simulierten Einzelzelle, welchen Einfluss bestimmte Membrankanäle auf die Weiterleitung eingehender Reize haben. Dabei zeigte sich, dass zwei Versionen eines Kanalproteins den Zellen unterschiedlichen Funktionen verleihen: Zellen mit dem einen Kanaltyp erwiesen sich als geeignet für die Weiterleitung des genauen Startzeitpunkts, während Zellen mit dem anderen Typ für die gesamte Dauer des Reizes feuern. In einer Simulation mehrerer Nervenzellen fanden die Forscher zudem, dass die Verschaltung der Zellen eine wichtige Rolle für die Verarbeitung spielt. „Die Kombination von experimenteller Biologie und Modellbildung half entscheidend dabei, wichtige Grundlagen der Verarbeitung von Bewegungsinformationen zu verstehen“, erläutert Glasauer. Auch für die klinische und technische Forschung sind die Ergebnisse von Bedeutung.

Von den Forschungsergebnissen könnten unter anderem Patienten mit Kleinhirnschädigungen profitieren. Betroffene können bei schnellen Kopfbewegungen nicht mit den Augen gegensteuern, gleichmäßige Bewegungen aber richtig verarbeiten. Möglicherweise liegt dabei die Schädigung eines der Zelltypen vor. Auch für wackelfreie Kamerasysteme, wie sie zum Beispiel in Fahrerassistenzsystemen in Autos oder Hubschraubern eingesetzt werden, könnte die hocheffiziente neuronale Verarbeitung als Vorbild dienen.

*Originalpublikation:
Rössert C, Moore L, Straka H, Glasauer S (2011), Cellular and network contributions to vestibular signal processing: impact of ion conductances, synaptic inhibition, and noise, J Neurosci, Volume 31, issue 23, 8359-8372
Für weitere Informationen wenden Sie sich bitte an:
Dr. Stefan Glasauer
Bernstein Zentrum München und
Ludwig-Maximilians-Universität München
Abteilung für Neurologie
Marchioninistr. 15,
81377 München
Tel: +49-89-7095-4839
E-mail: sglasauer@nefo.med.uni-muenchen.de

Johannes Faber | idw
Weitere Informationen:
http://www.bccn-muenchen.de
http://www.nncn.de
http://www.lmu.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie