Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn sich zwei Zellen trennen: Ein dynamischer Proteinkomplex sorgt für den letzten Schnitt

13.06.2017

Ein internationales Forscherteam unter Beteiligung des Wiener IMBA konnte erstmals die erstaunlich dynamische Organisation der Proteinmaschinerie ESCRT-III visualisieren, die an eine molekulare Sprungfeder erinnert und Membranen effizient abschnürt, wie das Fachmagazin Nature Cell Biology aktuell berichtet.

Finale Abnabelung zweier Zellen dank „Protein-Sprungfeder“


Ein dynamisches Modell des ESCRT-III Proteinkomplex dargestellt von Erstautorin Beata Mierzwa

beatascienceart.com


Das Enzym VPS stimuliert den Austausch der Untereinheiten und das Wachstum der Spiralenstruktur

(C)IMBA

So wie Skelett und Muskeln das Gerüst unseres Körpers ausmachen, bilden faserartige Proteine, die durch Verkettung einzelner Moleküle entstehen –sogenannte Filamente – das Gerüst unserer Zellen. Sie gestalten die Form der Zelloberfläche und ermöglichen wichtige Funktionen wie Zellbewegung, intrazellulären Transport und sind essentiell für die Zellteilung.

Dieser Prozess erstreckt sich über mehrere Phasen, bis im letzten Schritt ein dünner Membranschlauch, der die entstehenden Tochterzellen verbindet, durchtrennt wird. Verantwortlich für diese finale Abnabelung zweier Zellen ist ein Protein-Gefüge namens ESCRT-III.

ESCRT-III besteht aus vielen kleinen Untereinheiten, die sich zu spiralförmigen Strukturen zusammensetzen. Die Spiralstrukturen verengen sich, bis die Zellmembran endgültig abgeschnürt wird. Mit dieser Funktion in der Membranabschnürung ist ESCRT-III auch für viele weitere Prozesse in der Zelle zuständig. So hilft es der Zelle, Löcher in Membranen abzudichten und verschiedene Moleküle innerhalb der Zelle zu transportieren. Auch einige Viren verwenden ESCRT-III, um sich von der Wirtszelle abzuschnüren.

ESCRT-III- Ein dynamisches Protein, das sich ständig selbst erneuert

Ein internationales ForscherInnenteam rund um Daniel Gerlich am Wiener Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften (IMBA) und Aurélien Roux der Universität Genf, gewann mit ihrer aktuellen Forschung, die im Fachmagazin Nature Cell Biology veröffentlicht wurde, erstmals Einblicke, wie sich die spiralförmigen Strukturen organisieren, um all diese wichtigen Zellprozesse zu ermöglichen.

Bisher wurde angenommen, dass die einzelnen Proteinbausteine in den Spiralstrukturen stabil eingebaut sind und die Membran durch eine Änderung der Spiralform eingeschnürt wird. „Tatsächlich ist ESCRT-III ein sehr dynamisches Protein. Wir konnten herausfinden, dass die einzelnen Untereinheiten 50 bis 100-mal schneller ausgetauscht werden, als die Struktur wächst und sich räumlich umorganisiert. ESCRT-III erneuert sich also praktisch ständig.

Ein Enzym namens VPS4 hilft bei dieser ständigen Umschichtung von Baublöcken“, erklärt Beata Mierzwa, die sich Rahmen ihrer Doktorarbeit und ihrer anschließenden Forschung am IMBA intensiv mit den Eigenheiten von ESCRT-III beschäftigt hat. Ursprünglich dachten die Forscher, dass VPS4 die einzelnen Baublöcke ausschließlich entfernt, doch zu ihrer Überraschung scheint es den ständigen Austausch der einzelnen Bestandteile und somit das Wachstum von ESCRT-III zu stimulieren.

Um diesen Membran-Abschnürungsprozess im Labor nachzustellen, isolierten die ForscherInnen die ESCRT-Proteine und brachten sie auf eine künstliche Membran. Dank innovativer Methoden wie High-Speed Atomic Force Mikroskopie konnten sie die Dynamik von ESCRT live beobachten und erstmals wachsende und schrumpfende Spiral-Strukturen visualisieren.

"Unsere Erkenntnisse bieten ein völlig neues Modell als bisher angenommen. Die von uns entdeckte dynamische Umorganisation von ESCRT-III bringt neues Licht in die vielen Funktionen dieses zentralen Membranregulators, denn bisher ging man von dauerhaften Spiralstrukturen aus“, sagt Daniel Gerlich, IMBA Gruppenleiter und Letztautor der Studie.

„Unsere Erkenntnisse erklären etwa, wie sich ESCRT-III an die vielfältigen Membranstrukturen in unterschiedlichen biologischen Prozessen anpassen kann und wie Membranen über große Entfernungen verformt und abgeschnürt werden können. Wir freuen uns, dass wir neue Einblicke in die faszinierende Organisation der Zellen gewinnen konnten und die Vielzahl von biologischen Prozessen, an denen ESCRT-III beteiligt ist, nun besser verstehen.“

Originalpublikation:
"Dynamic instability in ESCRT-III assemblies”
Beata E. Mierzwa, Nicolas Chiaruttini, Lorena Redondo-Morata, Joachim Moser von Filseck, Julia König, Jorge Larios, Ina Poser, Thomas Müller-Reichert, Simon Scheuring, Aurélien Roux, Daniel W. Gerlich
Nature Cell Biology, DOI: 10.1038/ncb3559

Über die Illustration:
Kunst und Wissenschaft- Zwei Leidenschaften vereint in einer Zeichnung

Beata Mierzwa, die Erstautorin der Studie, hat auch die Illustration zu ESCRT-III selbst gestaltet.
Die junge Forscherin hat sich im Rahmen ihrer Doktorarbeit am IMBA intensiv mit den molekularen Maschinen der Zellteilung beschäftigt. Eine zweite Leidenschaft von Beata ist die Kunst, die sie als Mittel sieht, komplexe Forschung einfach und kreativ zu vermitteln. Zunächst begann sie, ihre eigenen Artikel und die Arbeiten ihrer Labor-Kollegen zu illustrieren – ihre wissenschaftlichen Kunstwerke entstanden und fanden über ihre Arbeitsgruppe hinaus Anklang und zieren nun die Cover von wissenschaftlichen Zeitschriften und Konferenzen. Bei einer Fachtagung präsentierte sie ihre Erkenntnisse rund um ESCRT-III in einem selbst designten Kleid, das den komplexen molekularen Mechanismus modisch illustrierte. Beata Mierzwa zeigt sehr schön, wie Kunst und Wissenschaft Hand in Hand gehen können und wie man Wissenschaft kreativ und unkonventionell vermitteln kann.

Auch am IMBA selbst wird die Verbindung von Kunst und Wissenschaft hochgehalten. Mehrere Kunstwerke, die durch eine Kooperation mit der Universität für Angewandte Kunst entstanden, sind am IMBA zu sehen. Erst kürzlich wurde die Serie „Art and Science: Bridging two Cultures“ vom IMBA und der viennacontemporary initiiert, mit dem Ziel, die beiden Welten Kunst und Wissenschaft einander näher zu bringen und die vielen Gemeinsamkeiten hervorzuheben, die diese auf den ersten Blick so unterschiedlichen Disziplinen haben. Nobelpreisträger Eric Kandel erläuterte bei der Auftaktveranstaltung der Serie, wie Wissenschaft eine Erklärung dafür geben kann, in welcher Art und Weise wir Kunstwerke wahrnehmen und ihnen Bedeutung zumessen.

Über IMBA:
Das IMBA – Institut für Molekulare Biotechnologie gehört zu den führenden biomedizinischen Forschungsinstituten in Europa. Im Fokus stehen medizinisch relevante Fragestellungen aus den Bereichen Stammzellbiologie, RNA-Biologie, Molekulare Krankheitsmodelle und Genetik. Das Institut befindet sich am Vienna Biocenter, einem dynamischen Konglomerat aus Universitäten, akademischer Forschung und Biotechnologie-Unternehmen. Das IMBA ist ein Tochterunternehmen der Österreichischen Akademie der Wissenschaften, der führenden Trägerin außeruniversitärer Forschung in Österreich. www.imba.oeaw.ac.at

Weitere Informationen:

http://de.imba.oeaw.ac.at/index.php?id=516

Mag. Evelyn Devuyst | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der Suche nach Universal-Grippeimpfstoffen – Neuraminidase unterschätzt?
21.06.2018 | Paul-Ehrlich-Institut - Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel

nachricht Organische Kristalle mit Twist und Selbstreparatur
21.06.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der “Stein von Rosetta” für aktive Galaxienkerne entschlüsselt

21.06.2018 | Physik Astronomie

Schneller und sicherer Fliegen

21.06.2018 | Informationstechnologie

Innovative Handprothesensteuerung besteht Alltagstest

21.06.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics