Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Elektronen Walzer tanzen

20.02.2018

Rechts- und linkshändige Moleküle lassen sich mit Hilfe kurzer Laserpulse auseinanderhalten

Die Identifikation rechts- und linkshändiger Moleküle ist entscheidend für viele Anwendungen in der Chemie und Pharmazie. Ein internationales Forscherteam (CELIA-CNRS/INRS/Max-Born-Institut/SOLEIL) hat nun ein neues originelles und hochempfindliches Verfahren vorgestellt, mit dem sich die Händigkeit von Molekülen um ein Vielfaches besser bestimmen lässt als mit bisherigen Methoden.


Durch einen ultrakurzen, zirkular polarisierten Laserpuls folgen die Elektronen einer spiralförmigen Rechts- oder Linksdrehung, die von der Händigkeit der Moleküle abhängt.

Samuel Beaulieu

Mit Hilfe extrem kurzer Laserpulse bringen die Forscher Elektronen in Molekülen zum Schwingen und können so den Drehsinn der Moleküle bestimmen. Die Forschungsergebnisse sind in „Nature Physics“ erschienen.

Nicht nur beim Menschen ist die Frage wichtig, ob jemand Rechts- oder Linkshänder ist. Je nachdem, mit welcher Hand wir etwas greifen, umschließen unsere Finger ein Objekt im Uhrzeigersinn oder gegen ihn. Auch in der Welt der Moleküle ist die Händigkeit von großer Bedeutung.

Bei Molekülen ist die Eigenschaft, eine bevorzugte Händigkeit zu haben, sogar noch viel wichtiger als beim Menschen: Denn bestimmte Substanzen können je nachdem, ob sie rechts- oder linkshändig vorliegen, entweder giftig oder heilsam sein. Manche Medikamente dürfen deshalb nur entweder links- oder rechtshändige Moleküle enthalten.

Das Problem dabei liegt darin, rechts- und linkshändige Moleküle, die sonst völlig identisch sind, nach ihrem „Chiralität“ genannten Drehsinn zu identifizieren und zu trennen. Denn außer bei Kontakt mit einem anderen chiralen Stoff verhalten sie sich völlig gleich. Ein internationales Forscherteam hat nun ein neues Verfahren entwickelt, mit dem sich die Händigkeit von Molekülen mit extremer Empfindlichkeit bestimmen lässt.

Seit dem 19. Jahrhundert ist bekannt, dass Moleküle in unterschiedlicher Händigkeit vorliegen können. Bekanntestes Beispiel ist das Erbgut, wie etwa menschliche DNA, dessen Struktur einem rechtsdrehenden Korkenzieher entspricht. Zur Bestimmung der Händigkeit nutzt man üblicherweise sogenannte zirkular polarisierte Lichtstrahlen, die entweder rechts- oder linksdrehende elektromagnetische Felder aufweisen – wie ein Korkenzieher entlang der Ausbreitungsachse gewickelt. Dieses chirale Licht wird etwas besser oder schlechter absorbiert, wenn es auf Moleküle mit gleichem oder umgekehrtem Drehsinn trifft. Der Effekt ist jedoch klein, da die Wellenlänge von Licht sehr viel größer ist als die atomaren Abstände in Molekülen. Das Licht „spürt“ den Drehsinn der Moleküle also nur ganz schwach.

Mit der neuen Methode lässt sich das Signal aber enorm verstärken. „Der Trick besteht darin, die Moleküle mit einem sehr kurzen Laserpuls zu bestrahlen“, sagt Prof. Olga Smirnova, Leiterin der Theoriegruppe am Max-Born-Institut. Solch ein Puls ist nur rund eine zehntel billionstel Sekunde lang und überträgt Energie auf die Elektronen im Molekül. Das regt sie für kurze Zeit zu Schwingungen an. Da sich die Elektronen in der rechts- oder linkshändigen Struktur des Moleküls befinden, nimmt auch ihre Schwingung diesen Drehsinn an.

Die Schwingung lässt sich dann mit einem zweiten Laserpuls auslesen. Dieser Puls muss ebenfalls kurz sein, um die Richtung der Elektronenbewegung registrieren zu können. Er hat so viel Energie, dass er die angeregten Elektronen aus dem Molekül herausschlägt. Je nachdem, ob die Elektronen rechts- oder linkshändig orientierte Schwingungen vollführten, fliegen sie dann entweder in Richtung des Laserstrahls aus dem Molekül oder in umgekehrter Richtung.

Bei Experimenten am „Centre for Intense Lasers and Applications“ (CELIA) der Universität Bordeaux konnte auf diese Weise sehr effizient die Händigkeit der Moleküle bestimmt werden, und zwar mit einem 10.000-fach stärkeren Signal als mit der üblicherweise genutzten Methode. Außerdem lassen sich so chirale chemische Reaktionen einleiten und über die Zeit verfolgen. Das Kunststück besteht darin, sehr kurze Laserpulse mit der passenden Frequenz bereitzustellen. Diese Technologie stammt aus der physikalischen Grundlagenforschung und ist erst seit Kurzem verfügbar. Sie könnte sich für andere Bereiche als äußerst hilfreich erweisen, bei denen die Händigkeit von Molekülen eine Rolle spielt, etwa für die chemische und pharmazeutische Forschung.

Da die Identifikation der Händigkeit von Molekülen mit der neuen Methode gelungen ist, denken die Wissenschaftlerinnen und Wissenschaftler bereits darüber nach, auch ein Laser-Trennverfahren für rechts- und linkshändige Moleküle zu entwickeln.

Text: Dirk Eidemüller / Forschungsverbund Berlin e.V.

Originalveröffentlichung:
S. Beaulieu, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Géneaux, A. G. Harvey, F. Légaré, Z. Mašín, L. Nahon, A. F. Ordonez, S. Petit, B. Pons, Y. Mairesse, O. Smirnova and V. Blanchet: Photoexcitation Circular Dichroism in Chiral Molecules, Nature Physics, 19 February 2018 (online), DOI: 10.1038/s41567-017-0038-z

Kontakt PR:
Stéphanie Thibault, Communications Advisor, INRS, stephanie.thibault@inrs.ca, Tel. +1 514 / 499-6612 (Montreal, Kanada)
Anja Wirsing, Pressereferentin, Forschungsverbund Berlin e.V., wirsing@fv-berlin.de, Tel. 030 / 6392-3337

Kontakt Wissenschaft:
Samuel Beaulieu, beaulieus@emt.inrs.ca (Bordeaux, Frankreich)
Olga Smirnova, olga.smirnova@mbi-berlin.de, Tel. 030 / 6392-1340

Gemeinsame Pressemitteilung: Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) im Forschungsverbund Berlin e.V. | Centre for Intense Lasers and Applications (CELIA) / Universität Bordeaux | French National Center for Scientific Research (CNRS) | French Alternative Energies and Atomic Energy Commission (CEA) | L'Institut national de la recherche scientifique (INRS), Kanada | Synchrotron SOLEIL, Frankreich

Weitere Informationen:

https://www.nature.com/articles/s41567-017-0038-z

Dipl.-Geogr. Anja Wirsing | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fv-berlin.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics