Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wende in der immunologischen Grundlagenforschung

10.09.2010
BIOSS-Forscher entdecken Mechanismus, der unser Immunsystem zur Antikörperproduktion anregt, Veröffentlichung in Nature

Fehlfunktionen und Überreaktionen unseres Immunsystems schaffen für immer mehr Menschen gravierende Probleme. Dr. Jianying Yang und Prof. Dr. Michael Reth, zwei Forscher des BIOSS, Centre for Biological Signalling Studies, Exzellenzcluster der Universität Freiburg und des Max-Planck-Institutes für Immunbiologie, haben ein bisher ungelöstes Problem zur Aktivierung unseres Immunsystems geklärt. Mit Methoden der Synthetischen Biologie wiesen sie den Mechanismus nach, durch den unser Immunsystem von tausenden körperfremden Stoffen aktiviert werden kann.

Vor nunmehr 110 Jahren, um 1900, hielt Paul Ehrlich, einer der Väter der modernen Immunologie, seine legendäre Croonian Lecture vor der Royal Society in London. In seinem Vortrag „On Immunity with Special Reference to Cell Life” widersprach Ehrlich der damals gängigen Annahme, die menschliche Immunität gegen bakterielle Giftstoffe beruhe allein auf einer Veränderung des Blutserums. Ehrlich stellte dann das erste tragfähige Konzept der Immunaktivierung vor, indem er Strukturen auf der Oberfläche von Zellen vermutete, die wie Schlüssel und Schloss funktionieren und so die Zellen bei Kontakt mit Toxinen alarmieren. In der Biologie nennt man dies Liganden-Rezeptor Interaktion. Als erkannt wurde, unser Immunsystem reagiert nicht nur auf Toxine, sondern auf unzählige köperfremde Strukturen geriet Ehrlichs Modell einer rezeptorgesteuerten Immunreaktion in Misskredit.

Mittlerweile ist jedoch erwiesen, dass unsere Immunzellen tatsächlich über Rezeptoren aktiviert werden. Die meisten Rezeptoren auf der Zelloberfläche, beispielsweise Hormonrezeptoren, binden nur ein bestimmtes Ligandenmolekül, so wie zu jedem Schloss nur ein richtiger Schlüssel passt. Wenn Millionen von Schlüsseln ein Schloss aufschließen können, stellt sich die Frage, wie funktioniert dieses Schloss und wie werden wir vor einer anhaltenden Hyperaktivität unserer Immunabwehr geschützt?

Alle Stoffe, auch Viren oder bakterielle Moleküle, die eine Immunantwort hervorrufen, werden von den Immunologen einheitlich als Antigene bezeichnet. B-Lymphozyten, kurz B-Zellen, haben bis zu 120.000 B-Zellantigenrezeptoren (BZR) auf ihrer Oberfläche, über die sie zur Bildung von Antikörpern angeregt werden. Das Problem, wie die BZR auf unseren Immunzellen von so vielen verschiedenen Stoffen aktiviert werden können, blieb bisher ungelöst.

Jianying Yang und Michael Reth haben jetzt eine Antwort gefunden, die das Problem der Aktivierung unseres Immunsystems erklärt. Mit Methoden der Synthetischen Biologie bauten sie den Antigenrezeptor von Mäusen in einer Fruchtfliegenzelle nach. Anders als die bisherige Forschung interessierte sie der BZR auf ruhenden B-Zellen, also den noch nicht aktivierten Zellen. Sie kamen zu überraschenden Ergebnissen. Der BZR auf ruhenden B-Zellen bildet enge multimere Strukturen, das heißt er besteht aus mehreren unterschiedlichen Untereinheiten und diese verhindern die Signalaktivierung, um uns vor einer Immunantwort zu schützen. Der Kontakt der Zelle mit dem Antigen führt zur Dissoziation der BZR-Multimere und dies erst zur Signalgebung. Der Dissoziierungsprozess ist weitgehend unabhängig von Stukturvorgaben des Antigens und erklärt, warum der BZR von tausenden unterschiedlichen Liganden aktiviert werden kann.

Das neue Modell der Aktivierung des Antigenrezeptors ist der anerkannten Lehrmeinung diametral entgegengesetzt. „Unser neues Modell beruht auf der Auflösung und nicht auf der Bildung einer bestimmten BZR-Struktur und dies kann durch verschiedenste antigene Moleküle bewerkstelligt werden“, erklärt Michael Reth. Die Entdeckung einer geordneten multimeren Struktur des BZR lässt darauf schließen, dass auf ruhenden B-Zellen die Aktivierung des Rezeptors hoch reguliert ist. Viele menschliche Erkrankungen wie das alarmierend wachsende Problem der Autoimmunität oder die Bildung von B-Zell-Tumoren wie Leukämie oder Lymphdrüsenkrebs werden durch eine Hyperaktivität des BZR in unserem Immunsystem hervorgerufen.

Die für das Verständnis unserer Immunreaktion fundamentale Forschung an der Regulierung des BZR auf ruhenden B-Zellen hat gerade erst begonnen. Für unseren Zugang zu einer geregelten, gesunden Immunabwehr werden die neuen Ergebnisse wichtig sein. Inwieweit sich dies auch auf die Entwicklung neuer Impfstrategien oder neuer Behandlungsmethoden gegen B-Zell-Tumore auswirken wird, ist noch kaum überschaubar.

Gieseking-Anz

Veröffentlichung in Nature: “Oligomeric organization of the B cell antigen receptor on resting cells”, Jianying Yang and Michael Reth, Nature advance online publication 5 September 2010Nature DOI: 10.1038/nature09357

Link: http://www.nature.com/nature/journal/vaop/ncurrent/full/nature09357.html

Weitere Infos zum Thema, ein historischer Rückblick zur Entwicklung der Immunologie und ein aktueller Beitrag von Michael Reth zur Synthetischen Biologie in Forschung & Lehre unter www:bioss.uni-freiburg.de

BIOSS, das Centre for Biological Signalling Studies der Universität Freiburg, wird als Exzellenzcluster von der DFG finanziert. Das Erforschen von biologischen Signalprozessen in und zwischen Zellen vereint Wissenschaftlerinnen und Wissenschaftler aus sieben Fakultäten, dem MPI für Immunbiologie und dem Fraunhofer-Institut für Physikalische Messtechnik in Freiburg. Michael Reth ist Sprecher des Clusters, das die modernen analytischen Biowissenschaften mit neuen Strategien der Synthetischen Biologie kombiniert, gemäß der BIOSS-Strategie: Von der Analyse zur Synthese.

Michael Reths Arbeitsgruppe ist Teil des Max-Planck-Instituts für Immunbiologie in Freiburg.

Kontakt:
Prof. Dr. Michael Reth
BIOSS Centre for Biological Signalling Studies
Exzellenzcluster
Fakultät für Biologie
Universität Freiburg
Max-Planck-Institut für ImmunbiologieFreiburg
Tel.: 0761/ 5108 420
Fax: 0761/ 5108 423
E-Mail: michael.reth@bioss.uni-freiburg.de
www.bioss.uni-freiburg.de
BIOSS Centre for Biological Signalling Studies
Tel.: 0761/ 203 97374
E-Mail:gieseking.christiane@bioss.uni-freiburg.de

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.bioss.uni-freiburg.de
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature09357.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops