Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltweit erstes 3D-Modell einer Synapse

30.05.2014

Blick in eine neue Welt der Neurowissenschaften: Göttinger Forscherteam um Prof. Dr. Silvio O. Rizzoli gelingt erste wissenschaftlich fundierte 3D-Darstellung einer Synapse. Veröffentlicht am 30. Mai 2014 in SCIENCE.

Ohne Synapsen funktioniert das Gehirn nicht. Sie sind die Kontaktstellen, über die Nervenzellen miteinander kommunizieren. Bislang waren Aufbau und Ausstattung dieser hochkomplexen Strukturen der Wissenschaft im Detail nicht bekannt.


Weltweit erstes 3D-Modell einer Synapse. Die Rekonstruktion einer Synapse im Querschnitt zeigt 60 verschiedene Proteine, die zusammen über 300.000 einzelne Proteinkopien in der Synapse ergeben.

Burkhard Rammner

Einem Göttinger Forscherteam um Prof. Dr. Silvio O. Rizzoli vom DFG Forschungszentrum und Exzellenzcluster für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns (CNMPB) der Universitätsmedizin Göttingen (UMG) ist es jetzt erstmals gelungen, alle wichtigen Bausteine einer Synapse in korrekter Anzahl und Position zu bestimmen.

Die Forscher konnten so das erste wissenschaftlich fundierte 3D-Modell einer Synapse erstellen. Möglich wurde das Projekt durch die Zusammenarbeit mehrerer Spezialisten auf den Gebieten der Elektronenmikroskopie, hochauflösenden Lichtmikroskopie (STED), Massenspektrometrie und quantitativen Biochemie. Beteiligt waren Kooperationspartner aus der UMG, dem Max-Planck-Institut für experimentelle Medizin, Göttingen, und dem Leibniz Institut für Molekulare Pharmakologie, Berlin.

Gefördert wurden die Forscher unter anderem vom Europäischen Forschungsrat (European Research Council, ERC) und der Deutschen Forschungsgemeinschaft (DFG). Die Ergebnisse sind am 30. Mai 2014 in der renommierten wissenschaftlichen Fachzeitschrift SCIENCE erschienen. Das von den Göttinger Forschern erarbeitete 3D-Modell einer Synapse wurde aufgrund der breiten Relevanz des Themas zum Coverbild dieser Magazin-Ausgabe ausgewählt.

Originalpublikation
Wilhelm BG, Mandad S, Truckenbrodt S, Kröhnert K, Schäfer C, Rammner B, Koo SJ, Claßen GA, Krauss M, Haucke V, Urlaub H, Rizzoli SO (2014) Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. SCIENCE, 30. Mai 2014.

NEUE, BISLANG UNBEKANNTE WELT
"Mit dem 3D-Modell einer Synapse eröffnet sich den Neurowissenschaften der Blick in eine neue und bisher unbekannte Welt", sagt Prof. Dr. Rizzoli, Senior-Autor der Publikation. Ungeklärt war bisher vor allem die Anzahl und Verteilung der Proteine, den Bausteinen der Zelle. Das von Prof. Rizzoli und seinem Team präsentierte Modell einer Synapse beschreibt gleich mehrere hunderttausend einzelne Proteine in korrekter Anzahl und an ihrer genauen Position in einer Nervenzelle.

"Anhand des 3D-Modells der Synapse können wir nun erstmals zeigen, dass Proteine in ganz unterschiedlicher Anzahl für die verschiedenen Vorgänge innerhalb der Synapse benötigt werden", sagt Dr. Benjamin G. Wilhelm, Erst-Autor der Publikation. Die Forscher fanden heraus: Proteine, die an der Ausschüttung von Botenstoffen (Neurotransmitter) aus den sogenannten synaptischen Vesikeln beteiligt sind, liegen mit bis zu 26.000 Kopien in jeder Synapse vor. Dagegen sind Proteine, die für den gegenläufigen Vorgang, das Recycling von synaptischen Vesikeln, zuständig sind, lediglich mit 1.000 bis 4.000 Kopien pro Synapse vertreten.

Mit diesen Details liefert das Synapsen-Modell auch weiteren Aufschluss zu einer in der Neurowissenschaft lange diskutierten Kontroverse: Wie viele synaptische Vesikel können in einer Synapse gleichzeitig verwendet werden? Die Göttinger Forschungsergebnisse zeigen: Es sind mehr als genug Proteine für die Vesikel-Freisetzung vorhanden. Doch die für das Recycling vorhandenen Proteine reichen nur für sieben bis elf Prozent aller Vesikel in der Synapse aus. Das bedeutet, dass der Großteil der Vesikel einer Synapse nicht gleichzeitig genutzt werden kann.

Die wichtigste Erkenntnis, die das neue Modell liefert: In Abläufen, an denen viele verschiedene Proteine beteiligt sind, ist die Anzahl dieser Proteine erstaunlich genau aufeinander abgestimmt. Die Bausteine der Zellmaschinerie greifen hier wie in einer hocheffizienten Maschine ineinander, ohne Überproduktion oder Verschwendung. Die verschiedenen Proteine unterliegen völlig unterschiedlichen Transportmechanismen und besitzen zudem eine stark voneinander abweichende Lebensdauer. Wie die Zelle also diese erstaunliche Feinabstimmung so erfolgreich bewerkstelligt, bleibt unklar.

Das neue Modell kann in Zukunft als Referenzquelle für Neurowissenschaftler aller Sparten dienen. Es kann dabei helfen, Forschung zielgerichteter durchzuführen, da die Anzahl an Kopien eines Proteins Rückschlüsse auf seine Relevanz zulässt. Das Forscherteam will hier allerdings nicht Halt machen. Prof. Rizzoli: "Unser Ziel ist es, letztendlich eine komplette Nervenzelle zu rekonstruieren". Kombiniert mit funktionellen Studien zur Wechselwirkung einzelner Proteine wäre es damit in Zukunft möglich, zelluläre Funktionen zu simulieren und letztendlich eine "virtuelle Zelle" zu erschaffen.

Eine Videoanimation des Forscherteams zeigt die Proteinvielfalt innerhalb einer Synapse und deren Aufbau (www.sciencemag.org).

Für seinen Ansatz zur Erforschung der molekularen Anatomie von Nervenzellen ist Prof. Dr. Silvio O. Rizzoli Anfang des Jahres 2014 mit dem ERC Consolidator Grant 2013 ausgezeichnet worden. "Das Ergebnis der Forschungsarbeiten von Prof. Rizzoli ist spektakulär", sagt Prof. Dr. Heyo Kroemer, Sprecher des Vorstandes der UMG und Dekan der Medizinischen Fakultät. "Mit dieser hochpräzisen Synapsendarstellung bieten sich der medizinischen Forschung in naher Zukunft völlig neue Ansatzmöglichkeiten. Auch dieses Ergebnis belegt, dass die Universitätsmedizin Göttingen attraktive Rahmenbedingungen für internationale Spitzenforschung bietet." Prof. Dr. Mathias Bähr, Sprecher des CNMPB, sagt: "Wir freuen uns, dass es Prof. Rizzoli so schnell gelungen ist, seine Vorhaben so erfolgreich umzusetzen. Diese Studie trägt dazu bei, die generelle Proteinverteilung in gesunden Nervenzellen zu verstehen. Dies kann in Zukunft auch dazu beitragen, Veränderungen in der neuronalen Anatomie zu identifizieren, die durch neurodegenerative Erkrankungen, wie dem Morbus Parkinson, entstehen."

WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen, Georg-August-Universität
Institut für Neuro- und Sinnesphysiologie
European Neuroscience Institute Göttingen (ENI-G), Grisebachstr. 5, 37077 Göttingen
Prof. Dr. Silvio O. Rizzoli, Telefon +49 (0) 551 39-33630
srizzol@gwdg.de

CNMPB - Zentrum für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns Exzellenzcluster 171 - DFG-Forschungszentrum 103
Humboldtallee 23, 37073 Göttingen
Dr. Heike Conrad, Telefon 0551 / 39-7065
Wissenschaftliche Koordination, Presse und Öffentlichkeitsarbeit
heike.benecke@med.uni-goettingen.de

Weitere Informationen:

http://www.rizzoli-lab.de - zur Arbeitsgruppe von Prof. Rizzoli
http://www.cnmpb.de - zum Exzellenzcluster und DFG-Forschungszentrum Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns (CNMPB)
http://www.sciencemag.org/content/344/6187/1023/suppl/DC1 - zur Videoanimation

Dr. Heike Conrad | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise