Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltweit erstes 3D-Modell einer Synapse

30.05.2014

Blick in eine neue Welt der Neurowissenschaften: Göttinger Forscherteam um Prof. Dr. Silvio O. Rizzoli gelingt erste wissenschaftlich fundierte 3D-Darstellung einer Synapse. Veröffentlicht am 30. Mai 2014 in SCIENCE.

Ohne Synapsen funktioniert das Gehirn nicht. Sie sind die Kontaktstellen, über die Nervenzellen miteinander kommunizieren. Bislang waren Aufbau und Ausstattung dieser hochkomplexen Strukturen der Wissenschaft im Detail nicht bekannt.


Weltweit erstes 3D-Modell einer Synapse. Die Rekonstruktion einer Synapse im Querschnitt zeigt 60 verschiedene Proteine, die zusammen über 300.000 einzelne Proteinkopien in der Synapse ergeben.

Burkhard Rammner

Einem Göttinger Forscherteam um Prof. Dr. Silvio O. Rizzoli vom DFG Forschungszentrum und Exzellenzcluster für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns (CNMPB) der Universitätsmedizin Göttingen (UMG) ist es jetzt erstmals gelungen, alle wichtigen Bausteine einer Synapse in korrekter Anzahl und Position zu bestimmen.

Die Forscher konnten so das erste wissenschaftlich fundierte 3D-Modell einer Synapse erstellen. Möglich wurde das Projekt durch die Zusammenarbeit mehrerer Spezialisten auf den Gebieten der Elektronenmikroskopie, hochauflösenden Lichtmikroskopie (STED), Massenspektrometrie und quantitativen Biochemie. Beteiligt waren Kooperationspartner aus der UMG, dem Max-Planck-Institut für experimentelle Medizin, Göttingen, und dem Leibniz Institut für Molekulare Pharmakologie, Berlin.

Gefördert wurden die Forscher unter anderem vom Europäischen Forschungsrat (European Research Council, ERC) und der Deutschen Forschungsgemeinschaft (DFG). Die Ergebnisse sind am 30. Mai 2014 in der renommierten wissenschaftlichen Fachzeitschrift SCIENCE erschienen. Das von den Göttinger Forschern erarbeitete 3D-Modell einer Synapse wurde aufgrund der breiten Relevanz des Themas zum Coverbild dieser Magazin-Ausgabe ausgewählt.

Originalpublikation
Wilhelm BG, Mandad S, Truckenbrodt S, Kröhnert K, Schäfer C, Rammner B, Koo SJ, Claßen GA, Krauss M, Haucke V, Urlaub H, Rizzoli SO (2014) Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. SCIENCE, 30. Mai 2014.

NEUE, BISLANG UNBEKANNTE WELT
"Mit dem 3D-Modell einer Synapse eröffnet sich den Neurowissenschaften der Blick in eine neue und bisher unbekannte Welt", sagt Prof. Dr. Rizzoli, Senior-Autor der Publikation. Ungeklärt war bisher vor allem die Anzahl und Verteilung der Proteine, den Bausteinen der Zelle. Das von Prof. Rizzoli und seinem Team präsentierte Modell einer Synapse beschreibt gleich mehrere hunderttausend einzelne Proteine in korrekter Anzahl und an ihrer genauen Position in einer Nervenzelle.

"Anhand des 3D-Modells der Synapse können wir nun erstmals zeigen, dass Proteine in ganz unterschiedlicher Anzahl für die verschiedenen Vorgänge innerhalb der Synapse benötigt werden", sagt Dr. Benjamin G. Wilhelm, Erst-Autor der Publikation. Die Forscher fanden heraus: Proteine, die an der Ausschüttung von Botenstoffen (Neurotransmitter) aus den sogenannten synaptischen Vesikeln beteiligt sind, liegen mit bis zu 26.000 Kopien in jeder Synapse vor. Dagegen sind Proteine, die für den gegenläufigen Vorgang, das Recycling von synaptischen Vesikeln, zuständig sind, lediglich mit 1.000 bis 4.000 Kopien pro Synapse vertreten.

Mit diesen Details liefert das Synapsen-Modell auch weiteren Aufschluss zu einer in der Neurowissenschaft lange diskutierten Kontroverse: Wie viele synaptische Vesikel können in einer Synapse gleichzeitig verwendet werden? Die Göttinger Forschungsergebnisse zeigen: Es sind mehr als genug Proteine für die Vesikel-Freisetzung vorhanden. Doch die für das Recycling vorhandenen Proteine reichen nur für sieben bis elf Prozent aller Vesikel in der Synapse aus. Das bedeutet, dass der Großteil der Vesikel einer Synapse nicht gleichzeitig genutzt werden kann.

Die wichtigste Erkenntnis, die das neue Modell liefert: In Abläufen, an denen viele verschiedene Proteine beteiligt sind, ist die Anzahl dieser Proteine erstaunlich genau aufeinander abgestimmt. Die Bausteine der Zellmaschinerie greifen hier wie in einer hocheffizienten Maschine ineinander, ohne Überproduktion oder Verschwendung. Die verschiedenen Proteine unterliegen völlig unterschiedlichen Transportmechanismen und besitzen zudem eine stark voneinander abweichende Lebensdauer. Wie die Zelle also diese erstaunliche Feinabstimmung so erfolgreich bewerkstelligt, bleibt unklar.

Das neue Modell kann in Zukunft als Referenzquelle für Neurowissenschaftler aller Sparten dienen. Es kann dabei helfen, Forschung zielgerichteter durchzuführen, da die Anzahl an Kopien eines Proteins Rückschlüsse auf seine Relevanz zulässt. Das Forscherteam will hier allerdings nicht Halt machen. Prof. Rizzoli: "Unser Ziel ist es, letztendlich eine komplette Nervenzelle zu rekonstruieren". Kombiniert mit funktionellen Studien zur Wechselwirkung einzelner Proteine wäre es damit in Zukunft möglich, zelluläre Funktionen zu simulieren und letztendlich eine "virtuelle Zelle" zu erschaffen.

Eine Videoanimation des Forscherteams zeigt die Proteinvielfalt innerhalb einer Synapse und deren Aufbau (www.sciencemag.org).

Für seinen Ansatz zur Erforschung der molekularen Anatomie von Nervenzellen ist Prof. Dr. Silvio O. Rizzoli Anfang des Jahres 2014 mit dem ERC Consolidator Grant 2013 ausgezeichnet worden. "Das Ergebnis der Forschungsarbeiten von Prof. Rizzoli ist spektakulär", sagt Prof. Dr. Heyo Kroemer, Sprecher des Vorstandes der UMG und Dekan der Medizinischen Fakultät. "Mit dieser hochpräzisen Synapsendarstellung bieten sich der medizinischen Forschung in naher Zukunft völlig neue Ansatzmöglichkeiten. Auch dieses Ergebnis belegt, dass die Universitätsmedizin Göttingen attraktive Rahmenbedingungen für internationale Spitzenforschung bietet." Prof. Dr. Mathias Bähr, Sprecher des CNMPB, sagt: "Wir freuen uns, dass es Prof. Rizzoli so schnell gelungen ist, seine Vorhaben so erfolgreich umzusetzen. Diese Studie trägt dazu bei, die generelle Proteinverteilung in gesunden Nervenzellen zu verstehen. Dies kann in Zukunft auch dazu beitragen, Veränderungen in der neuronalen Anatomie zu identifizieren, die durch neurodegenerative Erkrankungen, wie dem Morbus Parkinson, entstehen."

WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen, Georg-August-Universität
Institut für Neuro- und Sinnesphysiologie
European Neuroscience Institute Göttingen (ENI-G), Grisebachstr. 5, 37077 Göttingen
Prof. Dr. Silvio O. Rizzoli, Telefon +49 (0) 551 39-33630
srizzol@gwdg.de

CNMPB - Zentrum für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns Exzellenzcluster 171 - DFG-Forschungszentrum 103
Humboldtallee 23, 37073 Göttingen
Dr. Heike Conrad, Telefon 0551 / 39-7065
Wissenschaftliche Koordination, Presse und Öffentlichkeitsarbeit
heike.benecke@med.uni-goettingen.de

Weitere Informationen:

http://www.rizzoli-lab.de - zur Arbeitsgruppe von Prof. Rizzoli
http://www.cnmpb.de - zum Exzellenzcluster und DFG-Forschungszentrum Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns (CNMPB)
http://www.sciencemag.org/content/344/6187/1023/suppl/DC1 - zur Videoanimation

Dr. Heike Conrad | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein Holodeck für Fliegen, Fische und Mäuse
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Wie Pflanzen ihr Gedächtnis vererben
21.08.2017 | Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik