Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltweit erster Feldeffekt-Transistor auf Virenbasis

10.07.2012
Mit Pflanzenviren zu neuen elektronischen Bauteilen
Es ist eines der ältesten bekannten pflanzenpathogenen Viren, seine Entdeckung markierte den Beginn der Virologie: das Tabakmosaikvirus. Nun schreibt es als Geburtshelfer für neuartige elektronische Bauteile in der Nanotechnologie erneut Geschichte. Gemeinsam haben Wissenschaftler der Universität Stuttgart und der Technischen Universität Darmstadt einen Feldeffekt-Transistor entwickelt, dessen Halbleiterschicht durch einen Biomineralisationsprozess auf dem Tabakmosaikvirus entsteht.

Ende des 19. Jahrhunderts erstmals als Krankheitserreger in Tabakkulturen beschrieben, lässt das Tabakmosaikvirus (TMV) heute wegen seiner Winzigkeit, Stabilität und definierten Struktur die Herzen von Nanotechnologen höher schlagen. „Wir erleben gerade eine Renaissance der Pflanzenviren“, schwärmt Prof. Christina Wege vom Biologischen Institut der Universität Stuttgart.

Gemeinsam mit der Arbeitsgruppe um Prof. Joachim Bill vom Institut für Materialwissenschaft und Chemikern der TU Darmstadt um Prof. Jörg J. Schneider hat das Forscherteam um Prof. Holger Jeske und Wege mit Hilfe des TMV neuartige aktive Nanostrukturen für Metalloxid-Halbleiter-Feldeffektransistoren (MOSFETs) schonend hergestellt. Diese werden als Schalter und Verstärker für unzählige An-wendungen in der Digital- und Hochfrequenz-Elektrotechnik eingesetzt und sind typischerweise so klein, dass mehrere Millionen Einzeltransistoren auf einem einzigen Computerprozessor Platz finden. MOSFETs können durch eine elektrische Steuerspannung schnell reguliert werden und bestehen aus drei Materialschichten: Substrat (elektrisch leitend), Dielektrikum und Halbleiter.

Feldeffekt-Transistor mit Halbleiterschicht aus einem Tabakmosaikvirus (grün)-Zinkoxid (grau)-Verbundmaterial, Siliziumdioxid-Dielektrikum (blau), elektrisch leiten-des n-dotiertes Silizium-Substrat (rot) und Elektroden (gold).
Universität Stuttgart

Die Wissenschaftler erzeugten nun die Halbleiterschicht mit Hilfe von TMV-Partikeln mit circa 300 Nanometern (also 300 Millionstel Millimetern) Länge und 18 Nanometern Durchmesser. Sie brachten diese auf zweilagige Silizium-Plättchen mit Elektroden auf und tauchten sie in eine Reaktions-lösung, aus der sich halbleitendes Zinkoxid (ZnO) abscheiden konnte. Dabei zeigte sich, dass die strukturierte Virusoberfläche das Wachs-tum besonders feiner Zinkoxid-Kristalle bewirkte und regulierte: Bereits bei 60 Grad Celsius bildete sich ein neuartiges TMV/ZnO-Verbundmaterial, das ohne Nachprozessierung schon die elektronische Transistoreigenschaft aufwies.

Mit herkömmlicher Technik können anorganische Halbleitermaterialien meist erst bei Temperaturen über 200 Grad hergestellt werden. Analysen zeigten überdies, dass der neue "Biotransistor" den meisten Zinkoxid-Transistoren klar überlegen war – die TMV-Stäbchen unterstützten offensichtlich den Elek¬tronentransport *).

Als nächstes wollen die Projektpartner die Leistung der „Biotransistoren“ weiter verbessern, sie miniaturisieren und an verschiedene Einsatzbereiche anpassen. In Darmstadt wird dafür die Anordnung der Transistorkomponenten aufeinander abgestimmt. In Stuttgart stellen die Pflanzenvirologen neue TMV-Oberflächenvarianten her, die Fabrikation und Betrieb optimieren sollen, und die Materialchemiker entwickeln Methoden zur Produktion weiterer halbleitender TMV-Verbundmaterialien mit anderen physikalischen Eigenschaften. Die umweltverträgliche Herstellung und Leistungsfähigkeit solcher neuen "Biohybridstrukturen" gilt weltweit als aussichtsreiche Grundlage für künftige Produktgenerationen in diversen technischen Bereichen.

*) Atanasova et al.: Virustemplated synthesis of ZnO nanostructures and formation of field-effect transistors. Advanced Materials 2011, 23: 4918-4922.
Siehe auch im Internet unter: http://www.uni-stuttgart.de/bio/bioinst/molbio/, http://www.bionik.uni-stuttgart.de/, http://www.chemie.tu-darmstadt.de/schneider/.

Ansprechpartner: Prof. Dr. Holger Jeske, Biologisches Institut, Tel. 0711/685-65070, e-mail: holger.jeske@bio.uni-stuttgart.de

Andrea Mayer-Grenu | Universität Stuttgart
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie