Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltneuheit in der Strömungsmesstechnik für Lebensmittel und Chemikalien

14.05.2012
Forscher der Technischen Universität Ilmenau haben ein neuartiges Durchflussmessgerät für empfindliche Lebensmittel und aggressive Chemikalien vorgestellt. Die Entwicklung ermöglicht weltweit erstmals berührungslose magnetische Strömungsmessung in schwach leitfähigen Flüssigkeiten und kann bei beliebig hohen Temperaturen eingesetzt werden.

Bei der Erfindung haben historische Experimente von Michael Faraday und Henry Cavendish Pate gestanden. Im Jahr 1832 versuchte der englische Naturforscher Michael Faraday in einem legendären Experiment, die Strömungsgeschwindigkeit der Themse elektrisch zu messen. Kurz zuvor hatte er das Induktionsgesetz entdeckt. Er vermutete nun, das Flusswasser müsse bei seiner Bewegung im Erdmagnetfeld eine elektrische Spannung zwischen linkem und rechtem Ufer erzeugen.


Der Versuchsaufbau zur berührungslosen Messung von Salzwasserströmung. Grafik: Frank Diehl


Für gut elektrisch leitfähige Flüssigkeiten wie Aluminium-, Stahl- oder Kupferschmelzen steht die an der TU Ilmenau entwickelte Technologie der Lorentzkraft-Durchflussmessung kurz vor der Marktreife. Grafik: Frank Diehl

Faradays Versuch schlug fehl. Doch dies lag einzig an der Unzulänglichkeit seiner Instrumente; die Idee selbst war richtig. Heute verrichten so genannte Faraday-Durchflussmesser, bestehend aus einem Rohr, einem Magnet und zwei Elektroden, weltweit zu hunderttausenden zuverlässig ihren Dienst in der Industrie, um Cola, Joghurt, Tomatenketchup, Chemikalien und sogar Abwässer zu vermessen.

Ilmenauer Forschern gelingt berührungslose Messung von Salzwasserströmungen

Trotz ihrer weiten Verbreitung haben Faraday-Durchflussmesser ein wesentliches Manko: Sie arbeiten nicht berührungslos. Um die Spannung zu messen, müssen zwei Elektroden in die Flüssigkeit eingetaucht werden, und diese Elektroden können korrodieren oder verschmutzen und so empfindliche Lebensmittel oder hochreine Chemikalien verunreinigen. Lebensmittel- und Arzneimittelhersteller wünschen sich deshalb schon lange elektrodenfreie magnetische Durchflussmesser.

Das ist jetzt einem Forscherteam der TU Ilmenau unter der Leitung von Professor André Thess gelungen.

Wie die Fachzeitschrift Applied Physics Letters in ihrer aktuellen Online-Ausgabe berichtet [A. Wegfrass, C. Diethold, M. Werner, T. Fröhlich, F. Hilbrunner, C. Resagk, A. Thess, A. universal noncontact flowmeter for liquids, Appl. Phys. Lett. 100, 194103 (2012)], hat die von der Deutschen Forschungsgemeinschaft finanzierte interdisziplinäre Arbeitsgruppe weltweit erstmalig Salzwasserströmungen magnetisch vermessen, ohne dass ihr Messgerät die Flüssigkeit berührte. Selbst die Rohrwand blieb unangetastet.

Patentierte Technologie für flüssige Metalle bereits vor der Marktreife

Die Ilmenauer Arbeitsgruppe erforscht schon seit über zehn Jahren berührungslose magnetische Strömungsmessverfahren und setzt dabei auf sogenannte Lorentzkraft-Durchflussmesser. Wie auch beim Faraday-Durchflussmesser lassen die Ilmenauer ein Magnetfeld auf die Strömung einwirken, so dass die strömende Flüssigkeit die Magnetfeldlinien durchquert. Doch im Gegensatz zum Faraday-Durchflussmesser benötigen die Ilmenauer Messtechniker keine Elektroden.
Sie nutzen vielmehr aus, dass strömende elektrisch leitfähige Flüssigkeiten wie etwa Apfelsaft oder flüssiger Stahl beim Vorbeifließen an einem starken Permanentmagnet die Magnetfeldlinien sanft verbiegen. Ähnlich den Barthaaren, an denen ein Kater selbst den leisesten Windstoß spürt, wirkt auf die Magnetfeldlinien und somit auch auf den Permanentmagnet eine winzige Kraft, die sogenannte Lorentzkraft. Je schneller die Flüssigkeit fließt und je besser sie den elektrischen Strom leitet, desto stärker ist die Lorentzkraft. Diese Kraft messen die Ilmenauer Forscher und berechnen daraus die Strömungsgeschwindigkeit.
Bei gut elektrisch leitfähigen Flüssigkeiten wie flüssiger Stahl und flüssiges Aluminium lassen sich Lorentzkraft-Durchflussmesser mit handelsüblichen Kraftmesssystemen bauen, so wie man sie beispielsweise bei Waagen in Obst- und Gemüseabteilungen von Supermärkten einsetzt. So ist es den Ilmenauer Wissenschaftlern schon 2005 erstmalig gelungen, Strömungen von Flüssigaluminium in einer Gießerei nachzuweisen. Seither haben sie ihre Lorentzkraft-Durchflussmesser unter harten Industriebedingungen getestet und verbessert. Die in fünf Ilmenauer Patenten geschützte Technologie steht im Bereich der metallurgischen Anwendungen nun kurz vor der Marktreife.

Herausforderung schwach leitende Flüssigkeiten

Doch während Lorentzkraft-Durchflussmesser für Flüssigmetalle recht zuverlässig und genau funktionieren, stellte ihre Anwendung auf schwach leitfähige Fluide wie Lebensmittel und Chemikalien bis vor kurzem einen weißen Fleck auf der Landkarte der Strömungsmesstechnik dar. Dies, weil die durch die Strömung erzeugten Lorentzkräfte auf den Permanentmagnet bei Lebensmitteln wesentlich kleiner sind als bei Flüssigmetallen. Strömt beispielsweise Cola waagerecht an einem Permanentmagnet vorbei, so wirkt auf ihn eine Seitenkraft, die mehrere Millionen mal keiner ist als seine Schwerkraft. Das Kräfteverhältnis ist etwa so, als wolle eine Maus einen vollbeladenen Lastkraftwagen zur Seite schieben.

Um solch kleine Kräfte zu messen, mussten die Ilmenauer Wissenschaftler ihre bisherigen Kraftmessverfahren über Bord werfen und nach neuen Messmethoden für kleine Kräfte Ausschau halten.

Fündig wurden sie in der Gravitationsphysik, wo sie sich von einem historischen Experiment des britischen Naturwissenschaftlers Henry Cavendish aus dem Jahre 1798 inspirieren ließen. Cavendish nutzte in seinem Experiment ein empfindliches Pendel, um die Anziehung von Bleikugeln durch die Gravitationskraft zu messen und somit Newtons Theorie der Schwerkraft zu prüfen. Seither werden solche Gravitationspendel weltweit eingesetzt, um die Newtonsche Gravitationskonstante zu messen.

Machbarkeit im Experiment nachgewiesen

Die Ilmenauer Forscher haben die Pendelidee aufgegriffen. Allerdings nutzten sie das Pendel nicht, um kleine Gravitationskräfte zu messen, sondern um ihre ähnlich kleinen Lorentzkräfte nachzuweisen. In ihrem Experiment ließen sie Salzwasser durch ein Rohr mit 15 Quadratzentimetern Querschnittsfläche strömen. Zwar besitzt die Durchflussmessung von Salzwasser keine praktische Bedeutung, doch hat Salzwasser etwa die gleiche elektrische Leitfähigkeit wie Bier. Es ist deshalb gut als Testflüssigkeit für Lebensmittelanwendungen geeignet.
Im Experiment ließen die Forscher zwei Permanentmagnete auf die Strömung einwirken, die an vier Wolframfäden hingen und ein Pendel bildeten. Zuvor hatten sie durch Computersimulationen berechnet, dass sich das Pendel unter dem Einfluss der Salzwasserströmung um eine winzige Strecke verschieben sollte und dass diese Strecke durch Laser vermessen werden kann. Als sie das Experiment dann durchführten, fanden sie ihre Computersimulationen mit hervorragender Genauigkeit bestätigt. Sie konnten nicht nur ihre Vorhersagen über die Abhängigkeit des Messsignals von der Durchflussmenge nachweisen, sondern auch den Einfluss der elektrischen Leitfähigkeit bestimmen.
Nach dem erfolgreich erbrachten Machbarkeitsnachweis arbeiten die Ilmenauer Wissenschaftler nun daran, das Messprinzip industrietauglich zu machen.

Weitere Informationen:
Prof. Dr. André Thess
Technische Universität Ilmenau
Fakultät für Maschinenbau
Tel: 03677-69-2445
Mobil: 0171-1237-234
Email: thess@tu-ilmenau.de

Bettina Wegner | idw
Weitere Informationen:
http://www.tu-ilmenau.de/lorentz-force
http://link.aip.org/link/?APL/100/194103

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunabwehr ohne Kollateralschaden
23.01.2017 | Universität Basel

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie