Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Welche Zellen geben im Hirn den Takt vor?

13.10.2014

Bearbeiten Netzwerke von Nervenzellen im Gehirn eine gemeinsame Aufgabe, synchronisieren sie ihre Aktivität in Schwingungen einer bestimmten Frequenz. Wissenschaftler des Universitätsklinikums Heidelberg haben nun die Taktgeber verschiedener Rhythmen identifiziert: Dabei geben unterschiedliche Zellgruppen jeweils ein anderes Tempo vor. Die Ergebnisse sind jetzt in Nature Neuroscience erschienen.

Wenn Nervenzellen im Gehirn miteinander kommunizieren, geben sie elektrische Signale häufig in einer bestimmten Frequenz weiter und pendeln sich so auf einen gemeinsamen Rhythmus ein. Verschiedene Frequenzen sind – so die gängige Hypothese – mit unterschiedlichen Hirnleistungen gekoppelt, etwa der Steuerung von Bewegungen oder der Wahrnehmung von Gegenständen.

Doch wie finden die Zellen in den richtigen Takt? Wissenschaftler des Universitätsklinikums Heidelberg haben nun in einem bestimmten Hirnbereich, dem Riechkolben von Mäusen, die Zellgruppen ausgemacht, die anderen Neuronen ihren Rhythmus aufzwingen. Es zeigte sich: Für jede der zwei untersuchten Frequenzen ist jeweils ein anderer Zelltyp zuständig.

Die nun in Nature Neuroscience erschienenen Ergebnisse werfen ein erstes Licht auf die Entstehung des bisher wenig verstandenen Phänomens der Gehirnrhythmen. Sie schaffen zudem eine wichtige Grundlage zum besseren Verständnis verschiedener Erkrankungen wie der Epilepsie oder Schizophrenie, die mit Störungen eben jener Rhythmen einhergehen.

Seit in den 1920er Jahren erstmals elektrische Potentiale des Gehirns gemessen wurden, ist bekannt, dass Nervenzellen im Gehirn rhythmisch aktiv sind. Wie auf Absprache geben sie ihre Signale in bestimmten Frequenzen weiter, wobei sich diese auch überlagern oder abschwächen können: Mit Hilfe dieses Feintunings kann das Gehirn auf verschiedene Reize angemessen reagieren.

Den Sinn dieser Rhythmen erklären sich Physiologen nach einer gängigen Hypothese wie folgt: Für die Verarbeitung ein und desselben Reizes sind in der Regel mehrere Hirnareale gefragt. Um zu prüfen, ob man z.B. eine vorbeigehende Person kennt, muss das Gehirn – vereinfacht dargestellt – auf die Bewegung reagieren, das Bild verarbeiten, die Gesichtsfelderkennung aktivieren und mit der Erinnerung an bekannte Menschen abgleichen. Damit dabei kein Chaos aus zig unzusammenhängenden Meldungen entsteht, pendeln sich die in den Gesamtprozess eingebundenen Netzwerke von Nervenzellen gewissermaßen aufeinander ein.

Zu häufig im Gleichtakt: Überreaktion der Nervenzellen verursacht epileptische Anfälle

„Diese Hypothese wird derzeit intensiv erforscht. Momentan weiß man weder wie oder wo diese Rhythmen entstehen, noch was genau sie bewirken“, sagt Seniorautor Dr. Andreas Schäfer, der inzwischen vom Institut für Anatomie und Zellbiologie des Universitätsklinikums Heidelberg an das University College in London gewechselt ist. Fehler in diesem System haben gravierende Folgen.

Bei Epilepsie synchronisieren sich Hirnareale ohne ersichtlichen Grund. Es kommt zu den typischen Krampfanfällen. Anders bei der Schizophrenie: Diese Erkrankung geht mit gestörten Rhythmen im Stirnlappen des Gehirns einher. Die Betroffenen leiden u.a. unter Wahnvorstellungen und Halluzinationen. Bei beiden Erkrankungen wäre es hilfreich, die fehlgesteuerten Taktgeber zu kennen. So könnte man der Ursache der Erkrankung näher kommen und passende Therapien entwickeln.

Das Team um Dr. Schäfer erforschte den Entstehungsort der Rhythmen in einem überschaubaren Modellsystem, dem Riechkolben von Mäusen. In diesem Gehirnareal werden Signale der Geruchszellen in der Nase verarbeitet, eingeordnet und unterschieden. Die Wissenschaftler schalteten bei genetisch veränderten Tieren einzelne Zellgruppen im Gehirn durch die Bestrahlung mit Licht vorübergehend aus.

Mit dieser aktuellen, sogenannten optogenetischen Methode entdeckten sie, dass die beiden wichtigsten Signalfrequenzen des Riechhirns, die schnelle Gamma- sowie die deutlich langsamere Theta-Frequenz, von unterschiedlichen, bereits bekannten Zellgruppen dieses Gehirnbereichs erzeugt werden, den Körner-Zellen und den glomerulären Zellen. Ihr Zusammenwirken ermöglicht die Unterscheidung von Gerüchen. „Mit dieser Arbeit haben wir gezeigt, wie unterschiedliche Rhythmen zustande kommen und dass jeweils andere Zelltypen dafür verantwortlich sind“, so Schäfer. „Das ist ein wichtiger Schritt, um die Signalverarbeitung im Gehirn zu verstehen.“

Literatur:
Fukunaga, I., Herb, J., Kollo, M., Boyden, E.S., Schaefer A.T. (2014): Independent control of gamma and theta activity by distinct interneuron networks in the olfactory bulb. Nature Neuroscience 2014 Sep;17(9):1208-16. doi: 10.1038/nn.3760

siehe auch:
Kollo, M., Schmaltz, A., Abdelhamid, M., Fukunaga, I., Schaefer A.T. (2014): “Silent” mitral cells dominate odor responses in the olfactory bulb of awake mice. Nature Neuroscience 2014 Oct;17(10):1313-5. doi: 10.1038/nn.3768.

Kontakt:
Dr. Andreas Schäfer
schaefer@ana.uni-heidelberg.de

Weitere Informationen:

http://www.ana.uni-heidelberg.de/ Institut für Anatomie und Zellbiologie

Julia Bird | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie