Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weiteres Puzzleteil des Hörens entdeckt

27.07.2015

Grundlagenforschung zum Hören: Neueste Erkenntnisse von Göttinger Wissenschaftlern in der Hörforschung. Publikation in der renommierten Fachzeitschrift „PNAS“

Hören ist eines unserer wichtigsten Sinne. Dennoch hat die Grundlagenforschung noch lange nicht alle Vorgänge geklärt, beispielsweise wie Schall im Innenohr in ein Nervensignal umgewandelt wird. Göttinger Hörforscher haben jetzt neue molekulare Details zur Signalumwandlung in den Sinneszellen der Hörschnecke, den so genannten inneren Haarzellen, herausgefunden.


(Abb. A) STED-Aufnahmen von Kalziumkanälen. die an der synaptischen Membran der Bändersynapsen angeordnet sind (grün). Das synaptische Band ist konfokal aufgenommen und hier in Magenta dargestellt. (Abb. B) Virtueller Schnitt aus einer 3D-Rekonstruktion einer Bändersynapse aufgenommen mit einem Transmissions-Elektronenmikroskop. umg/Jung und Chakrabarti

Sie konnten ein Protein identifizieren, das für die Verankerung von Kalziumkanälen an den speziellen Bändersynapsen der inneren Haarzellen verantwortlich ist. Fehlt dieses Protein RIM2 oder ist es genetisch verändert, werden die Kalziumkanäle in zu geringer Anzahl angelegt. Die Folge: Die Bändersynapsen funktionieren nicht mehr richtig. Die Ergebnisse weisen auf Ursachen für mögliche Störungen bei der Umwandlung oder der Weiterleitung des Hörsignals hin. Diese können zu Schwerhörigkeit führen.

Die Forschungserkenntnisse sind das Ergebnis einer Zusammenarbeit von Arbeitsgruppen des Instituts für Auditorische Neurowissenschaften und der Klinik für Hals-Nasen-Ohrenheilkunde der Universitätsmedizin Göttingen (UMG) mit Gruppen der Max-Planck-Institute für Experimentelle Medizin und für Biophysikalische Chemie in Göttingen sowie der Universität Bonn. Publiziert wurden die Forschungsergebnisse in der renommierten Fachzeitschrift PNAS.

Originalveröffentlichung: Sangyong Jung, Tomoko Oshima-Takagoa, Rituparna Chakrabarti, Aaron B. Wong, Zhizi Jing, Gulnara Yamanbaeva, Maria Magdalena Picher, Sonja M. Wojcik, Fabian Göttfert, Friederike Predoehl, Katrin Michel, Stefan W. Hell, Susanne Schoch, Nicola Strenzke, Carolin Wichmann, Tobias Moser (2015). Rab3-interacting molecules 2α and β (RIM2α and RIM2β) promote the abundance of voltage-gated CaV1.3 Ca2+ channels at hair cell active zones.

Proceedings of National Academy of Science (PNAS), USA, Proc Natl Acad Sci U S A. 112:E3141-9, 1st of June, online

Dass die so genannten Bändersynapsen der inneren Haarzellen eine Schlüsselrolle bei der Signalumwandlung vom akustischen Reiz in ein Nervensignal haben, ist seit einigen Jahren bekannt. Die besonderen Synapsen der inneren Haarzellen sind durch ihren speziellen Aufbau auf die schnelle und präzise Reizumwandlung optimal abgestimmt. Eben-so war schon bekannt, dass die räumlich präzise Verankerung Dutzender Kalziumkanäle wichtig für das Funktionieren der Bändersynapsen ist. Viele verschiedene Proteine müssen für die Vorgänge, wie die Freisetzung von Botenstoffen, an der Synapse koordiniert zusammenspielen. Bislang ist jedoch noch nicht geklärt, welche Proteine genau daran beteiligt sind.

NEUE DETAILS ZUR PROTEINMASCHINERIE DER BÄNDERSYNAPSEN

Bisher nahm die Grundlagenforschung an, dass die Botenstofffreisetzung an den Bändersynapsen zum Großteil anders abläuft als in anderen (konventionellen) Synapsen. Diese Vermutung lag nahe, weil sich die Proteinmaschinerie der Bändersynapsen in ihrem molekularen Aufbau entscheidend von anderen Synapsen unterscheidet. Sonst sehr gängige und wichtige Komponenten für die Botenstofffreisetzung schienen an den Bändersynapsen der inneren Haarzellen zu fehlen. Dafür besitzen sie teilweise ganz andere Moleküle.

Die Göttinger Hörforscher haben jetzt entdeckt, dass ein Protein, das an konventionellen Synapsen vorhanden ist, ebenfalls eine wichtige Rolle an den Bändersynapsen im Innenohr spielt: Das Rab3-Interaktions-Molekül (RIM) ist ein typisches Protein der sogenannten Zytomatrix an der aktiven Zone von Synapsen. Diese Zytomatrix besteht aus zahlreichen Proteinen, die der Vesikelrekrutierung, -freisetzung, der Verankerung von Kalziumkanälen oder der Strukturgebung dienen.

„Mit unserer Entdeckung konnten wir zeigen, dass die Proteinmaschinerie doch teilweise ähnlich ist. Allerdings kommen in den Bändersynapsen andere Varianten von RIM zum Einsatz, nämlich RIM2, RIM1 hingegen ist im Gegensatz zu anderen Synapsen nicht vorhanden“, sagt Dr. Carolin Wichmann, eine der SeniorautorInnen der neuen Studie, Leiterin der Arbeitsgruppe Molekulare Architektur von Synapsen am Institut für Auditorische Neurowissenschaften und InnenOhrLabor sowie Projektleiterin im Sonderforschungsbereich 889 „Zelluläre Mechanismen sensorischer Verarbeitung“ der Universitätsmedizin Göttingen (UMG).

WEITERE ERGEBNISSE IM DETAIL

Mittels hochauflösender STED-Mikroskopie konnten die Göttinger Hörforscher zudem aufklären, dass RIM2 in direkter Nähe zu den Kalziumkanälen an der Synapse lokalisiert. In Mäusen, denen das Protein RIM2 fehlt, sind weniger Kalziumkanäle in der synaptischen Membran vorhanden. „Mit zellphysiologischen Messungen konnten wir aufklären, dass bei Abwesenheit von RIM2 Protein weniger von dem benötigten Kalzium in die Zelle einströmt. Dies hat zur Folge, dass die Freisetzung der Botenstoffe vermindert ist“, sagt Dr. Sangyong Jung, Wissenschaftler am Institut für Auditorische Neurowissenschaf-ten der UMG und einer der Erstautoren der Studie.

Weitere Details bei genetisch veränderten Synapsen konnten die Göttinger Hörforscher mit dem Elektronenmikroskop in 3D (siehe Abb.) erkennen. Es zeigte sich, dass weniger Vesikel an der synaptischen Membran über dünne Filamente gebunden sind. „Wir vermuten, dass diese Filamente an der Synapse mithelfen, synaptische Vesikel zur Membran zu führen. So wird offenbar sichergestellt, dass möglichst viele Vesikel mit der Membran verschmelzen und ihre Botenstoffe freisetzen können. Liegen weniger gebundene Vesikel vor, so kann dies bereits die Freisetzung verringern“, sagt Dr. Carolin Wichmann. Die Weiterleitung des Signals über den Hörnerv ist ebenfalls beeinträchtigt und führt in den betroffenen mutanten Mäusen zu einer Hörstörung.

HINTERGRUNDINFORMATIONEN: VOM SCHALL ZUM NERVENSIGNAL

Nach der Übertragung der Schallwellen in das Innenohr übernehmen die Sinneszellen der Hörschnecke, die so genannten inneren Haarzellen, die Übersetzung des akustischen Reizes in ein elektrisches Signal. Dieses wird im Gehirn verarbeitet: Wir hören. Eine Schlüsselrolle für diese Signalumwandlung nehmen die besonderen Synapsen der inneren Haarzellen ein. Die so genannten Bändersynapsen sind durch ihren speziellen Aufbau auf die schnelle und präzise Reizumwandlung optimal abgestimmt. Sie besitzen eine ungewöhnliche Struktur, das synaptische Band. Das Band kann eine Vielzahl von synaptischen Vesikeln binden, in denen sich der Botenstoff Glutamat befindet. Damit der Botenstoff von einer Empfängerzelle aufgenommen werden kann, muss zuvor seine Freisetzung erfolgreich gelungen sein. Dies wird durch Kalzium gesteuert: Nach Anregung der inneren Haarzelle strömt Kalzium durch spezielle spannungsgesteuerte Kanäle (siehe Abb.), die in der synaptischen Membran sitzen, in die Zelle ein. Vesikel werden zur Membran geführt, verschmelzen bei Stimulation durch Kalzium mit dieser, der Botenstoff wird freigesetzt, kann dann von der Empfängerzelle aufgenommen und die Information so über den Hörnerv weitergeleitet werden.


WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen, Georg-August-Universität
Institut für Auditorische Neurowissenschaften und InnenOhrLabor
Arbeitsgruppe Molekulare Architektur von Synapsen
Dr. Carolin Wichmann, Telefon 0551 / 39-22604, carolin.wichmann@med.uni-goettingen.de

Stefan Weller | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-goettingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie