Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weiteres Puzzleteil des Hörens entdeckt

27.07.2015

Grundlagenforschung zum Hören: Neueste Erkenntnisse von Göttinger Wissenschaftlern in der Hörforschung. Publikation in der renommierten Fachzeitschrift „PNAS“

Hören ist eines unserer wichtigsten Sinne. Dennoch hat die Grundlagenforschung noch lange nicht alle Vorgänge geklärt, beispielsweise wie Schall im Innenohr in ein Nervensignal umgewandelt wird. Göttinger Hörforscher haben jetzt neue molekulare Details zur Signalumwandlung in den Sinneszellen der Hörschnecke, den so genannten inneren Haarzellen, herausgefunden.


(Abb. A) STED-Aufnahmen von Kalziumkanälen. die an der synaptischen Membran der Bändersynapsen angeordnet sind (grün). Das synaptische Band ist konfokal aufgenommen und hier in Magenta dargestellt. (Abb. B) Virtueller Schnitt aus einer 3D-Rekonstruktion einer Bändersynapse aufgenommen mit einem Transmissions-Elektronenmikroskop. umg/Jung und Chakrabarti

Sie konnten ein Protein identifizieren, das für die Verankerung von Kalziumkanälen an den speziellen Bändersynapsen der inneren Haarzellen verantwortlich ist. Fehlt dieses Protein RIM2 oder ist es genetisch verändert, werden die Kalziumkanäle in zu geringer Anzahl angelegt. Die Folge: Die Bändersynapsen funktionieren nicht mehr richtig. Die Ergebnisse weisen auf Ursachen für mögliche Störungen bei der Umwandlung oder der Weiterleitung des Hörsignals hin. Diese können zu Schwerhörigkeit führen.

Die Forschungserkenntnisse sind das Ergebnis einer Zusammenarbeit von Arbeitsgruppen des Instituts für Auditorische Neurowissenschaften und der Klinik für Hals-Nasen-Ohrenheilkunde der Universitätsmedizin Göttingen (UMG) mit Gruppen der Max-Planck-Institute für Experimentelle Medizin und für Biophysikalische Chemie in Göttingen sowie der Universität Bonn. Publiziert wurden die Forschungsergebnisse in der renommierten Fachzeitschrift PNAS.

Originalveröffentlichung: Sangyong Jung, Tomoko Oshima-Takagoa, Rituparna Chakrabarti, Aaron B. Wong, Zhizi Jing, Gulnara Yamanbaeva, Maria Magdalena Picher, Sonja M. Wojcik, Fabian Göttfert, Friederike Predoehl, Katrin Michel, Stefan W. Hell, Susanne Schoch, Nicola Strenzke, Carolin Wichmann, Tobias Moser (2015). Rab3-interacting molecules 2α and β (RIM2α and RIM2β) promote the abundance of voltage-gated CaV1.3 Ca2+ channels at hair cell active zones.

Proceedings of National Academy of Science (PNAS), USA, Proc Natl Acad Sci U S A. 112:E3141-9, 1st of June, online

Dass die so genannten Bändersynapsen der inneren Haarzellen eine Schlüsselrolle bei der Signalumwandlung vom akustischen Reiz in ein Nervensignal haben, ist seit einigen Jahren bekannt. Die besonderen Synapsen der inneren Haarzellen sind durch ihren speziellen Aufbau auf die schnelle und präzise Reizumwandlung optimal abgestimmt. Eben-so war schon bekannt, dass die räumlich präzise Verankerung Dutzender Kalziumkanäle wichtig für das Funktionieren der Bändersynapsen ist. Viele verschiedene Proteine müssen für die Vorgänge, wie die Freisetzung von Botenstoffen, an der Synapse koordiniert zusammenspielen. Bislang ist jedoch noch nicht geklärt, welche Proteine genau daran beteiligt sind.

NEUE DETAILS ZUR PROTEINMASCHINERIE DER BÄNDERSYNAPSEN

Bisher nahm die Grundlagenforschung an, dass die Botenstofffreisetzung an den Bändersynapsen zum Großteil anders abläuft als in anderen (konventionellen) Synapsen. Diese Vermutung lag nahe, weil sich die Proteinmaschinerie der Bändersynapsen in ihrem molekularen Aufbau entscheidend von anderen Synapsen unterscheidet. Sonst sehr gängige und wichtige Komponenten für die Botenstofffreisetzung schienen an den Bändersynapsen der inneren Haarzellen zu fehlen. Dafür besitzen sie teilweise ganz andere Moleküle.

Die Göttinger Hörforscher haben jetzt entdeckt, dass ein Protein, das an konventionellen Synapsen vorhanden ist, ebenfalls eine wichtige Rolle an den Bändersynapsen im Innenohr spielt: Das Rab3-Interaktions-Molekül (RIM) ist ein typisches Protein der sogenannten Zytomatrix an der aktiven Zone von Synapsen. Diese Zytomatrix besteht aus zahlreichen Proteinen, die der Vesikelrekrutierung, -freisetzung, der Verankerung von Kalziumkanälen oder der Strukturgebung dienen.

„Mit unserer Entdeckung konnten wir zeigen, dass die Proteinmaschinerie doch teilweise ähnlich ist. Allerdings kommen in den Bändersynapsen andere Varianten von RIM zum Einsatz, nämlich RIM2, RIM1 hingegen ist im Gegensatz zu anderen Synapsen nicht vorhanden“, sagt Dr. Carolin Wichmann, eine der SeniorautorInnen der neuen Studie, Leiterin der Arbeitsgruppe Molekulare Architektur von Synapsen am Institut für Auditorische Neurowissenschaften und InnenOhrLabor sowie Projektleiterin im Sonderforschungsbereich 889 „Zelluläre Mechanismen sensorischer Verarbeitung“ der Universitätsmedizin Göttingen (UMG).

WEITERE ERGEBNISSE IM DETAIL

Mittels hochauflösender STED-Mikroskopie konnten die Göttinger Hörforscher zudem aufklären, dass RIM2 in direkter Nähe zu den Kalziumkanälen an der Synapse lokalisiert. In Mäusen, denen das Protein RIM2 fehlt, sind weniger Kalziumkanäle in der synaptischen Membran vorhanden. „Mit zellphysiologischen Messungen konnten wir aufklären, dass bei Abwesenheit von RIM2 Protein weniger von dem benötigten Kalzium in die Zelle einströmt. Dies hat zur Folge, dass die Freisetzung der Botenstoffe vermindert ist“, sagt Dr. Sangyong Jung, Wissenschaftler am Institut für Auditorische Neurowissenschaf-ten der UMG und einer der Erstautoren der Studie.

Weitere Details bei genetisch veränderten Synapsen konnten die Göttinger Hörforscher mit dem Elektronenmikroskop in 3D (siehe Abb.) erkennen. Es zeigte sich, dass weniger Vesikel an der synaptischen Membran über dünne Filamente gebunden sind. „Wir vermuten, dass diese Filamente an der Synapse mithelfen, synaptische Vesikel zur Membran zu führen. So wird offenbar sichergestellt, dass möglichst viele Vesikel mit der Membran verschmelzen und ihre Botenstoffe freisetzen können. Liegen weniger gebundene Vesikel vor, so kann dies bereits die Freisetzung verringern“, sagt Dr. Carolin Wichmann. Die Weiterleitung des Signals über den Hörnerv ist ebenfalls beeinträchtigt und führt in den betroffenen mutanten Mäusen zu einer Hörstörung.

HINTERGRUNDINFORMATIONEN: VOM SCHALL ZUM NERVENSIGNAL

Nach der Übertragung der Schallwellen in das Innenohr übernehmen die Sinneszellen der Hörschnecke, die so genannten inneren Haarzellen, die Übersetzung des akustischen Reizes in ein elektrisches Signal. Dieses wird im Gehirn verarbeitet: Wir hören. Eine Schlüsselrolle für diese Signalumwandlung nehmen die besonderen Synapsen der inneren Haarzellen ein. Die so genannten Bändersynapsen sind durch ihren speziellen Aufbau auf die schnelle und präzise Reizumwandlung optimal abgestimmt. Sie besitzen eine ungewöhnliche Struktur, das synaptische Band. Das Band kann eine Vielzahl von synaptischen Vesikeln binden, in denen sich der Botenstoff Glutamat befindet. Damit der Botenstoff von einer Empfängerzelle aufgenommen werden kann, muss zuvor seine Freisetzung erfolgreich gelungen sein. Dies wird durch Kalzium gesteuert: Nach Anregung der inneren Haarzelle strömt Kalzium durch spezielle spannungsgesteuerte Kanäle (siehe Abb.), die in der synaptischen Membran sitzen, in die Zelle ein. Vesikel werden zur Membran geführt, verschmelzen bei Stimulation durch Kalzium mit dieser, der Botenstoff wird freigesetzt, kann dann von der Empfängerzelle aufgenommen und die Information so über den Hörnerv weitergeleitet werden.


WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen, Georg-August-Universität
Institut für Auditorische Neurowissenschaften und InnenOhrLabor
Arbeitsgruppe Molekulare Architektur von Synapsen
Dr. Carolin Wichmann, Telefon 0551 / 39-22604, carolin.wichmann@med.uni-goettingen.de

Stefan Weller | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-goettingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit

Antibiotikaresistenz zeigt sich durch Leuchten

28.03.2017 | Biowissenschaften Chemie