Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von wegen „Spatzenhirn“: Wie Nervenzellen schlaues Verhalten bei Rabenvögeln ermöglichen

28.11.2013
Neurobiologen der Universität Tübingen erforschen erstmals die hirnphysiologischen Grundlagen der Intelligenz von Krähen

Von wegen „Spatzenhirn“: Rabenvögel wie Krähen, Elstern und Häher gelten als äußerst intelligent.

Die Neurobiologen Lena Veit und Professor Andreas Nieder der Universität Tübingen haben nun erstmals gezeigt, wie im Gehirn von Krähen Intelligenzleistungen hervorgebracht werden, die für strategische Entscheidungen notwendig sind. Ihre Ergebnisse werden am 28. November im Fachmagazin Nature Communications veröffentlicht.

Als „Spatzenhirn“ titulieren wir einen Dummkopf. Dieser Vergleich ist unzutreffend, denn Rabenvögel wie Krähen, Elstern und Häher sind alles andere als dumm. Schon in Sagen und Mythen wird Rabenvögeln, die auch zu den Sperlingsvögeln gehören, besondere Schläue zugeschrieben.

Verhaltensbiologen nennen sie aufgrund ihrer Intelligenz gar „gefiederte Primaten“, denn sie fertigen und gebrauchen Werkzeuge, können sich eine Unmenge an Futterplätzen merken und planen ihr Sozialverhalten, indem sie die Handlungen anderer Gruppenmitglieder mit einbeziehen. Dieses hohe Maß an Intelligenz mag überraschen, denn die Gehirne dieser Tiere sind grundsätzlich anders aufgebaut als die von Primaten und anderen Säugetieren, an denen solche Aufgaben üblicherweise untersucht werden.

Die Tübinger Wissenschaftler erforschten nun erstmals hirnphysiologischen Grundlagen dieses intelligenten Verhaltens. Dafür trainierten sie Rabenkrähen, Gedächtnisaufgaben am Computer zu lösen. Die Krähen bekamen ein Musterbild präsentiert, mussten sich dieses merken, und kurz darauf eines von zwei gezeigten Testbildern mit dem Schnabel auf einem Touchscreen auswählen. Eines der beiden Testbilder war identisch mit dem zuvor gemerkten Musterbild, das andere verschieden.

Ob das gleiche („gleich-Regel“) oder ungleiche Testbild („ungleich-Regel“) die richtige Lösung war, wurde den Krähen in jedem Versuchsdurchlauf durch einen Hinweisreiz neu angezeigt. Je nach Regel mussten die Tiere also die Aufgabe blitzschnell wechseln. Das erfordert höchste Konzentration und eine geistige Flexibilität, die bei weitem nicht alle Tierarten aufbringen können und die selbst für Menschen eine Herausforderung ist.

Die Krähen meisterten diese schwierige Aufgabe bald selbst mit völlig neuen Musterbildern. Dabei beobachteten die Wissenschaftler in einem umgrenzten Hirngebiet der Krähen Nervenzellen mit erstaunlichen Eigenschaften. Die eine Gruppe der Nervenzellen antwortete ausschließlich und immer dann, wenn die Krähe die „gleich-Regel“ anwenden musste, während eine andere Gruppe von Nervenzellen immer nur bei der „ungleich-Regel“ aktiv war. Anhand der Regelzellen war oft vorherzusehen, welche Regel die Krähen befolgen würden, noch bevor sie die Auswahl trafen.

Mit der in der Fachzeitschrift Nature Communications vorgestellten Arbeit ergeben sich wertvolle Einblicke, wie im Lauf der Evolution intelligentes Verhalten mehrmals unabhängig voneinander hervorgebracht und hirnorganisch verwirklicht wurde. „Bei Vögeln sind viele Funktionen anders verwirklicht, uns trennt eine sehr lange evolutionäre Entwicklung von diesen direkten Nachfahren der Dinosaurier“, sagt Lena Veit. „Wir können also im Gehirn der Vögel eine alternative Lösung dafür finden, wie mit verschiedenen anatomischen Voraussetzungen die gleichen Intelligenzleistungen hervorgebracht werden können.“ Trotz der Unterschiede im Gehirn sind sich die Regelzellen bei Krähen und Primaten zum Verwechseln ähnlich ‒ sie deuten also auf ein allgemeines Prinzip hin, das sich im Laufe der Evolution immer wieder bewährt hat. „So wie man durch den Vergleich der grundsätzlich verschieden aufgebauten Flügel von Vögeln und Fledermäusen allgemeine Prinzipien der Aerodynamik ableiten kann, so können wir auch durch die Untersuchung der funktionalen Gemeinsamkeiten und Unterschiede der entsprechenden Areale des Vogel- und Säugergehirns auf allgemeine Prinzipien der Funktionsweise des Gehirns schließen“, erläutert Professor Andreas Nieder.

Originalveröffentlichung:
Lena Veit & Andreas Nieder: Abstract rule neurons in the endbrain support intelligent behaviour in corvid songbirds. Nature Communications ; DOI: 10.1038/ncomms3878.
Kontakt:
Prof. Dr. Andreas Nieder
Universität Tübingen
Fachbereich Biologie
Tierphysiologie/Institut für Neurobiologie
Telefon + 49 7071 29-75347
andreas.nieder[at]uni-tuebingen.de

Antje Karbe | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Kobold in der Zange
17.01.2018 | Leibniz-Institut für Katalyse e. V. an der Universität Rostock

nachricht Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen
16.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungsnachrichten

Der Kobold in der Zange

17.01.2018 | Biowissenschaften Chemie

Mit Elektrizität Magnetismus umschalten

17.01.2018 | Physik Astronomie