Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Weg in die Zelle

17.02.2012
Mathematiker des MATHEON helfen bei der Erklärung der Funktionsweise des Eiweißmoleküls Dynamin

„Man kann sich einen aufgeblasenen Luftballon auf einer Luftpumpe vorstellen. Nur sehr viel kleiner. Wenn man nun mit einer Schlinge den Hals des Luftballons abschnürt, wird er von der Pumpe getrennt und kann sich frei bewegen“. So in etwa lässt sich einer der molekularen Vorgänge beschreiben, mit denen sich der FU-Mathematiker Dr. Frank Noe im MATHEON-Projekt A19, Modeling and optimization of functional molecules, beschäftigt. Konkret geht es dabei um die „Molekulare Struktur und den Mechanismus von Dynamin“.


Modell der Funktionsweise von Dynamin
Noe

Dynamin ist ein Eiweißmolekül und „die Schlinge“, die den Ballon von der Halterung trennt. Diese Trennung ist notwendig, damit das Vesikel, so heißt der Ballon wissenschaftlich, seine Aufgabe als Transportmittel von Boten- oder Nährstoffen in die Körperzellen wahrnehmen kann. Zunächst lagern sich die zu transportierenden Stoffe in einem Vesikel ab, das sich aus der Zellhülle einstülpt, danach dockt das Dynamin-Molekül an den Hals des Vesikels an und bildet eine Spirale darum. Schließlich trennt es diesen Hals durch. Das Vesikel ist nun frei und kann die Nährstoffe in die Zellen transportieren.

Dieser Vorgang ist schon länger bekannt, aber die molekularen Details der Arbeitsweise des Dynamins waren bislang ungeklärt. Einer Forschergruppe am Max-Delbrück-Zentrum für Molekulare Medizin (MDC) in Berlin ist es nun gelungen, „Schnappschüsse“ der molekularen Feinstruktur zu bekommen. Mit Hilfe der mathematischen Forschungen von Frank Noe und seinen Kollegen im MATHEON gelang es, diesen statischen Strukturen Leben einzuhauchen.

„Ohne mathematische Methoden wäre es nicht möglich gewesen, die Abläufe bei der Durchtrennung des Vesikelhalses zu simulieren“, erklärt der Mathematiker.

Denn die Simulation des molekularen Prozesses ist äußerst aufwendig: „Eine Simulation hat 250.000 Teilchen, ein Rechenschritt dauert selbst auf einem Großrechner 1 Sekunde. Allerdings müssten wir Millionen von Rechenschritten durchführen um den Prozess direkt zu simulieren. Das würde Jahrzehnte dauern, obwohl die Abschnürung in der Zelle nur Millisekunden braucht.“ Mithilfe der mathematischen Methoden, die im MATHEON entwickelt wurden, konnte der Abschnürvorgang in viele kleine Simulationen aufgeteilt und somit beherrschbar gemacht werden.

Im Fall von Dynamin hat dies zur Folge, dass man die genaue Vorgehensweise dieses Moleküls nun erstmals in seinen einzelnen Abläufen darstellen konnte. Dabei hat sich gezeigt, dass das Molekül einer bestimmten Dynamik folgt. „Wir konnten drei wesentliche Zustände des Moleküls feststellen“, sagt der Mathematiker und beschreibt den Ablauf so: „Dynamin-Moleküle legen sich zunächst einzeln an den Vesikel-Hals und verbinden sich dann zu mindestens eineinhalb bis zwei engen Windungen. Dann geht dieses Gebilde wie eine Sprungfeder auf und dreht sich dabei in sich. Dadurch wird das zähflüssige Material des Vesikelhalses quasi abgerissen.“

Für die Medizin ist das Verständnis dieses Vorgangs vor allem wichtig, weil er einer der Angriffspunkte für Gifte und Krankheiten ist. „Beispielsweise greifen viele Nervengifte an dieser Stelle an und blockieren damit die Nervenfunktion“, weiß Frank Noe. Aber auch neurodegenerative Krankheiten wie Parkinson beeinflussen die Vesikelaufnahme in Nervenzellen. „Wenn wir die Arbeitsweise von Dynamin besser verstehen, können wir auch neue Ansatzpunkte für die Frühdiagnostik oder die medizinische Behandlung finden“, so Dr. Noe.

Die Zusammenarbeit von Medizinern, Strukturbiologen und Mathematikern wird auf diesem Gebiet natürlich fortgesetzt. „Mit unseren mathematischen Forschungen im MATHEON-Projekt können wir sicherlich auch weiterhin wertvolle Erkenntnisse befördern und beisteuern“, so Frank Noe.

Diese Arbeit wurde in der Fachzeitschrift „Nature“ in der Ausgabe 477 auf Seite 556 veröffentlicht. Weitere Informationen über diese Arbeiten erhalten sie unter
http://www.nature.com/nature/journal/v477/n7366/full/nature10369.html
sowie
http://www.biocomputing-berlin.de/biocomputing/en/projects/matheon_project_
a19_modelling_and_optimization_of_functional_molecules
Auch Frank Noe gibt Ihnen gerne weitere Auskünfte unter Telefon: 030 838 75354 oder Email: noe@math.fu-berlin.de

Rudolf Kellermann | idw
Weitere Informationen:
http://www.matheon.de/
http://numerik.mi.fu-berlin.de/Forschung/Noe/index.php

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau