Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Weg in die Zelle

17.02.2012
Mathematiker des MATHEON helfen bei der Erklärung der Funktionsweise des Eiweißmoleküls Dynamin

„Man kann sich einen aufgeblasenen Luftballon auf einer Luftpumpe vorstellen. Nur sehr viel kleiner. Wenn man nun mit einer Schlinge den Hals des Luftballons abschnürt, wird er von der Pumpe getrennt und kann sich frei bewegen“. So in etwa lässt sich einer der molekularen Vorgänge beschreiben, mit denen sich der FU-Mathematiker Dr. Frank Noe im MATHEON-Projekt A19, Modeling and optimization of functional molecules, beschäftigt. Konkret geht es dabei um die „Molekulare Struktur und den Mechanismus von Dynamin“.


Modell der Funktionsweise von Dynamin
Noe

Dynamin ist ein Eiweißmolekül und „die Schlinge“, die den Ballon von der Halterung trennt. Diese Trennung ist notwendig, damit das Vesikel, so heißt der Ballon wissenschaftlich, seine Aufgabe als Transportmittel von Boten- oder Nährstoffen in die Körperzellen wahrnehmen kann. Zunächst lagern sich die zu transportierenden Stoffe in einem Vesikel ab, das sich aus der Zellhülle einstülpt, danach dockt das Dynamin-Molekül an den Hals des Vesikels an und bildet eine Spirale darum. Schließlich trennt es diesen Hals durch. Das Vesikel ist nun frei und kann die Nährstoffe in die Zellen transportieren.

Dieser Vorgang ist schon länger bekannt, aber die molekularen Details der Arbeitsweise des Dynamins waren bislang ungeklärt. Einer Forschergruppe am Max-Delbrück-Zentrum für Molekulare Medizin (MDC) in Berlin ist es nun gelungen, „Schnappschüsse“ der molekularen Feinstruktur zu bekommen. Mit Hilfe der mathematischen Forschungen von Frank Noe und seinen Kollegen im MATHEON gelang es, diesen statischen Strukturen Leben einzuhauchen.

„Ohne mathematische Methoden wäre es nicht möglich gewesen, die Abläufe bei der Durchtrennung des Vesikelhalses zu simulieren“, erklärt der Mathematiker.

Denn die Simulation des molekularen Prozesses ist äußerst aufwendig: „Eine Simulation hat 250.000 Teilchen, ein Rechenschritt dauert selbst auf einem Großrechner 1 Sekunde. Allerdings müssten wir Millionen von Rechenschritten durchführen um den Prozess direkt zu simulieren. Das würde Jahrzehnte dauern, obwohl die Abschnürung in der Zelle nur Millisekunden braucht.“ Mithilfe der mathematischen Methoden, die im MATHEON entwickelt wurden, konnte der Abschnürvorgang in viele kleine Simulationen aufgeteilt und somit beherrschbar gemacht werden.

Im Fall von Dynamin hat dies zur Folge, dass man die genaue Vorgehensweise dieses Moleküls nun erstmals in seinen einzelnen Abläufen darstellen konnte. Dabei hat sich gezeigt, dass das Molekül einer bestimmten Dynamik folgt. „Wir konnten drei wesentliche Zustände des Moleküls feststellen“, sagt der Mathematiker und beschreibt den Ablauf so: „Dynamin-Moleküle legen sich zunächst einzeln an den Vesikel-Hals und verbinden sich dann zu mindestens eineinhalb bis zwei engen Windungen. Dann geht dieses Gebilde wie eine Sprungfeder auf und dreht sich dabei in sich. Dadurch wird das zähflüssige Material des Vesikelhalses quasi abgerissen.“

Für die Medizin ist das Verständnis dieses Vorgangs vor allem wichtig, weil er einer der Angriffspunkte für Gifte und Krankheiten ist. „Beispielsweise greifen viele Nervengifte an dieser Stelle an und blockieren damit die Nervenfunktion“, weiß Frank Noe. Aber auch neurodegenerative Krankheiten wie Parkinson beeinflussen die Vesikelaufnahme in Nervenzellen. „Wenn wir die Arbeitsweise von Dynamin besser verstehen, können wir auch neue Ansatzpunkte für die Frühdiagnostik oder die medizinische Behandlung finden“, so Dr. Noe.

Die Zusammenarbeit von Medizinern, Strukturbiologen und Mathematikern wird auf diesem Gebiet natürlich fortgesetzt. „Mit unseren mathematischen Forschungen im MATHEON-Projekt können wir sicherlich auch weiterhin wertvolle Erkenntnisse befördern und beisteuern“, so Frank Noe.

Diese Arbeit wurde in der Fachzeitschrift „Nature“ in der Ausgabe 477 auf Seite 556 veröffentlicht. Weitere Informationen über diese Arbeiten erhalten sie unter
http://www.nature.com/nature/journal/v477/n7366/full/nature10369.html
sowie
http://www.biocomputing-berlin.de/biocomputing/en/projects/matheon_project_
a19_modelling_and_optimization_of_functional_molecules
Auch Frank Noe gibt Ihnen gerne weitere Auskünfte unter Telefon: 030 838 75354 oder Email: noe@math.fu-berlin.de

Rudolf Kellermann | idw
Weitere Informationen:
http://www.matheon.de/
http://numerik.mi.fu-berlin.de/Forschung/Noe/index.php

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie