Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Weg in die Zelle

17.02.2012
Mathematiker des MATHEON helfen bei der Erklärung der Funktionsweise des Eiweißmoleküls Dynamin

„Man kann sich einen aufgeblasenen Luftballon auf einer Luftpumpe vorstellen. Nur sehr viel kleiner. Wenn man nun mit einer Schlinge den Hals des Luftballons abschnürt, wird er von der Pumpe getrennt und kann sich frei bewegen“. So in etwa lässt sich einer der molekularen Vorgänge beschreiben, mit denen sich der FU-Mathematiker Dr. Frank Noe im MATHEON-Projekt A19, Modeling and optimization of functional molecules, beschäftigt. Konkret geht es dabei um die „Molekulare Struktur und den Mechanismus von Dynamin“.


Modell der Funktionsweise von Dynamin
Noe

Dynamin ist ein Eiweißmolekül und „die Schlinge“, die den Ballon von der Halterung trennt. Diese Trennung ist notwendig, damit das Vesikel, so heißt der Ballon wissenschaftlich, seine Aufgabe als Transportmittel von Boten- oder Nährstoffen in die Körperzellen wahrnehmen kann. Zunächst lagern sich die zu transportierenden Stoffe in einem Vesikel ab, das sich aus der Zellhülle einstülpt, danach dockt das Dynamin-Molekül an den Hals des Vesikels an und bildet eine Spirale darum. Schließlich trennt es diesen Hals durch. Das Vesikel ist nun frei und kann die Nährstoffe in die Zellen transportieren.

Dieser Vorgang ist schon länger bekannt, aber die molekularen Details der Arbeitsweise des Dynamins waren bislang ungeklärt. Einer Forschergruppe am Max-Delbrück-Zentrum für Molekulare Medizin (MDC) in Berlin ist es nun gelungen, „Schnappschüsse“ der molekularen Feinstruktur zu bekommen. Mit Hilfe der mathematischen Forschungen von Frank Noe und seinen Kollegen im MATHEON gelang es, diesen statischen Strukturen Leben einzuhauchen.

„Ohne mathematische Methoden wäre es nicht möglich gewesen, die Abläufe bei der Durchtrennung des Vesikelhalses zu simulieren“, erklärt der Mathematiker.

Denn die Simulation des molekularen Prozesses ist äußerst aufwendig: „Eine Simulation hat 250.000 Teilchen, ein Rechenschritt dauert selbst auf einem Großrechner 1 Sekunde. Allerdings müssten wir Millionen von Rechenschritten durchführen um den Prozess direkt zu simulieren. Das würde Jahrzehnte dauern, obwohl die Abschnürung in der Zelle nur Millisekunden braucht.“ Mithilfe der mathematischen Methoden, die im MATHEON entwickelt wurden, konnte der Abschnürvorgang in viele kleine Simulationen aufgeteilt und somit beherrschbar gemacht werden.

Im Fall von Dynamin hat dies zur Folge, dass man die genaue Vorgehensweise dieses Moleküls nun erstmals in seinen einzelnen Abläufen darstellen konnte. Dabei hat sich gezeigt, dass das Molekül einer bestimmten Dynamik folgt. „Wir konnten drei wesentliche Zustände des Moleküls feststellen“, sagt der Mathematiker und beschreibt den Ablauf so: „Dynamin-Moleküle legen sich zunächst einzeln an den Vesikel-Hals und verbinden sich dann zu mindestens eineinhalb bis zwei engen Windungen. Dann geht dieses Gebilde wie eine Sprungfeder auf und dreht sich dabei in sich. Dadurch wird das zähflüssige Material des Vesikelhalses quasi abgerissen.“

Für die Medizin ist das Verständnis dieses Vorgangs vor allem wichtig, weil er einer der Angriffspunkte für Gifte und Krankheiten ist. „Beispielsweise greifen viele Nervengifte an dieser Stelle an und blockieren damit die Nervenfunktion“, weiß Frank Noe. Aber auch neurodegenerative Krankheiten wie Parkinson beeinflussen die Vesikelaufnahme in Nervenzellen. „Wenn wir die Arbeitsweise von Dynamin besser verstehen, können wir auch neue Ansatzpunkte für die Frühdiagnostik oder die medizinische Behandlung finden“, so Dr. Noe.

Die Zusammenarbeit von Medizinern, Strukturbiologen und Mathematikern wird auf diesem Gebiet natürlich fortgesetzt. „Mit unseren mathematischen Forschungen im MATHEON-Projekt können wir sicherlich auch weiterhin wertvolle Erkenntnisse befördern und beisteuern“, so Frank Noe.

Diese Arbeit wurde in der Fachzeitschrift „Nature“ in der Ausgabe 477 auf Seite 556 veröffentlicht. Weitere Informationen über diese Arbeiten erhalten sie unter
http://www.nature.com/nature/journal/v477/n7366/full/nature10369.html
sowie
http://www.biocomputing-berlin.de/biocomputing/en/projects/matheon_project_
a19_modelling_and_optimization_of_functional_molecules
Auch Frank Noe gibt Ihnen gerne weitere Auskünfte unter Telefon: 030 838 75354 oder Email: noe@math.fu-berlin.de

Rudolf Kellermann | idw
Weitere Informationen:
http://www.matheon.de/
http://numerik.mi.fu-berlin.de/Forschung/Noe/index.php

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteine entdecken, zählen, katalogisieren
28.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an
28.06.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive