Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zur "künstlichen Nase": Wenn Nanoforscher andere Saiten aufziehen

23.04.2009
Selbst einzelne Moleküle müssen in chemischen Analysen aufgespürt werden. Für diesen hochempfindlichen Nachweis wurden in der Nanoforschung winzige Saiten entwickelt, die charakteristische Schwingungen zeigen.

Dockt das gesuchte Molekül an eine der Saiten an, wird diese schwerer und schwingt messbar langsamer. Bislang fehlte es allerdings an der praktischen Umsetzung solcher "Nano-Elektromechanischer Systeme", kurz NEMS.

LMU-Physikern gelang in diesem Bereich jetzt ein Durchbruch: Sie konstruierten aus einem nichtleitenden Material Nanosaiten, die elektrisch einzeln angeregt werden und zu Tausenden auf einem Chip gefertigt werden können.

So ließe sich etwa eine hochempfindliche "künstliche Nase" realisieren, um unterschiedliche Moleküle - etwa Schadstoffe - einzeln nachzuweisen. Die neuartigen NEMS könnten aber auch als winzige Taktgeber in Handy-Uhren und in einer Vielzahl von anderen Anwendungen zum Einsatz kommen. (Nature, 22. April 2009)

Der sichere, schnelle und kostengünstige Nachweis einzelner Moleküle ist für die chemische Analytik von großer Bedeutung. Ein mögliches Verfahren stammt aus der Nanotechnologie: Das sind sogenannte "Nano-Elektromechanische Systeme" oder NEMS. Hier kommen Saiten mit Durchmessern von 100 Nanometern- entsprechend einem zehntausendstel Millimeter - zum Einsatz, die zu charakteristischen Schwingungen angeregt werden können. Werden diese Saiten entsprechend chemisch beschichtet, docken Moleküle dort an - und zwar jeweils nur eine Art von Molekül je Saite.

Durch die Verbindung mit dem Molekül wird die Saite etwas schwerer, so dass sie etwas langsamer schwingt. "Eine Messung der Schwingungsperiode ermöglicht also, chemische Substanzen molekülgenau nachzuweisen", erklärt Quirin Unterreithmeier, der Erstautor der Studie. "Im Idealfall sitzen auf einem Chip von der Größe eines Fingernagels dann mehrere Tausend Saiten, die jeweils hochspezifisch ein bestimmtes Molekül erkennen - damit ließe sich etwa eine äußerst empfindliche 'künstliche Nase' bauen."

Bislang aber scheiterte die Umsetzung solcher Systeme noch an technischen Schwierigkeiten, unter anderem an der Anregung und Messung der Schwingungen. Zwar können die Nanosaiten über eine magnetomechanische, piezoelektrische oder auch elektrothermische Anregung zum Schwingen gebracht werden. Dies setzt aber voraus, dass die Nanosaiten aus Metall bestehen oder zumindest metallisch beschichtet sind, was wiederum die Schwingungen stark dämpft und eine empfindliche Messung verhindert. Einzelne Moleküle können damit kaum detektiert werden. Darüber hinaus wird das Unterscheiden der Signale verschiedener schwingender Saiten erschwert.

Das neu entwickelte Verfahren umgeht nun diese Schwierigkeiten. Quirin Unterreithmeier, Dr. Eva Weig und Professor Jörg Kotthaus vom Center for NanoScience (CeNS) und der Fakultät für Physik der LMU und dem Exzellenzcluster "Nanosystems Initiative Munich (NIM)" konstruierten ein NEMS, in dem Nanosaiten einzeln mittels dielektrischer Wechselwirkung angeregt werden - welche etwa auch für "elektrisch aufgeladene" Haare im Winter sorgt. Entsprechend diesem physikalischen Prinzip werden die Nanosaiten aus dem elektrisch nicht leitenden Material Silizium-Nitrid in einem elektrischen Feld zur Schwingung angeregt, und diese Schwingung dann gemessen.

Das zur Anregung erforderliche elektrische Wechselfeld wurde zwischen zwei Goldelektroden nahe der Saite erzeugt. Die Messung der Schwingung leisteten zwei weitere Elektroden. "Diesen Aufbau haben wir mittels Ätzverfahren hergestellt", berichtet Weig. "Er ließe sich aber ohne großen Aufwand in zehntausendfacher Wiederholung auf einem Chip realisieren. Durch eine geeignete Verschaltung muss nur die Adressierbarkeit der einzelnen Saiten gewährleistet sein." Alles in allem sollte dies eine technisch leichte Übung sein - und einen Durchbruch in der chemischen Analytik erlauben. Doch auch jenseits der "künstlichen Nase" sind Anwendungen denkbar. So könnten die Nanosaiten unter anderem in Handy-Uhren als Taktgeber zum Einsatz kommen. Auch als ultrascharfer Filter für elektrische Signale in der Messtechnik ließen sich die neuartigen Resonatoren verwenden.

Die Studie entstand im Rahmen des Exzellenzclusters "Nanosystems Initiative Munich (NIM)", das es sich zum Ziel gesetzt hat, funktionale Nanostrukturen für Anwendungen in der Informationsverarbeitung und den Lebenswissenschaften zu entwickeln, zu erforschen und zur Einsatzreife zu bringen. (NIM/suwe)

Publikation:
"Universal transduction scheme for nanomechanical systems based on dielectric forces",
Quirin P. Unterreithmeier, Eva M. Weig, Jörg P. Kotthaus
Nature, 23 April 2009
doi:10.1038/nature07932
Ansprechpartner:
Professor Jörg P. Kotthaus
Fakultät für Physik der LMU
Tel.: 089 / 2180 - 3737
E-Mail: kotthaus@cens.de
Dr. Peter Sonntag
Nanosystems Initiative Munich (NIM)
Tel.: 089 / 2180 - 5091
E-Mail: peter.sonntag@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/
http://www.nano-initiative-munich.de/press/press-material

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie