Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zur "künstlichen Nase": Wenn Nanoforscher andere Saiten aufziehen

23.04.2009
Selbst einzelne Moleküle müssen in chemischen Analysen aufgespürt werden. Für diesen hochempfindlichen Nachweis wurden in der Nanoforschung winzige Saiten entwickelt, die charakteristische Schwingungen zeigen.

Dockt das gesuchte Molekül an eine der Saiten an, wird diese schwerer und schwingt messbar langsamer. Bislang fehlte es allerdings an der praktischen Umsetzung solcher "Nano-Elektromechanischer Systeme", kurz NEMS.

LMU-Physikern gelang in diesem Bereich jetzt ein Durchbruch: Sie konstruierten aus einem nichtleitenden Material Nanosaiten, die elektrisch einzeln angeregt werden und zu Tausenden auf einem Chip gefertigt werden können.

So ließe sich etwa eine hochempfindliche "künstliche Nase" realisieren, um unterschiedliche Moleküle - etwa Schadstoffe - einzeln nachzuweisen. Die neuartigen NEMS könnten aber auch als winzige Taktgeber in Handy-Uhren und in einer Vielzahl von anderen Anwendungen zum Einsatz kommen. (Nature, 22. April 2009)

Der sichere, schnelle und kostengünstige Nachweis einzelner Moleküle ist für die chemische Analytik von großer Bedeutung. Ein mögliches Verfahren stammt aus der Nanotechnologie: Das sind sogenannte "Nano-Elektromechanische Systeme" oder NEMS. Hier kommen Saiten mit Durchmessern von 100 Nanometern- entsprechend einem zehntausendstel Millimeter - zum Einsatz, die zu charakteristischen Schwingungen angeregt werden können. Werden diese Saiten entsprechend chemisch beschichtet, docken Moleküle dort an - und zwar jeweils nur eine Art von Molekül je Saite.

Durch die Verbindung mit dem Molekül wird die Saite etwas schwerer, so dass sie etwas langsamer schwingt. "Eine Messung der Schwingungsperiode ermöglicht also, chemische Substanzen molekülgenau nachzuweisen", erklärt Quirin Unterreithmeier, der Erstautor der Studie. "Im Idealfall sitzen auf einem Chip von der Größe eines Fingernagels dann mehrere Tausend Saiten, die jeweils hochspezifisch ein bestimmtes Molekül erkennen - damit ließe sich etwa eine äußerst empfindliche 'künstliche Nase' bauen."

Bislang aber scheiterte die Umsetzung solcher Systeme noch an technischen Schwierigkeiten, unter anderem an der Anregung und Messung der Schwingungen. Zwar können die Nanosaiten über eine magnetomechanische, piezoelektrische oder auch elektrothermische Anregung zum Schwingen gebracht werden. Dies setzt aber voraus, dass die Nanosaiten aus Metall bestehen oder zumindest metallisch beschichtet sind, was wiederum die Schwingungen stark dämpft und eine empfindliche Messung verhindert. Einzelne Moleküle können damit kaum detektiert werden. Darüber hinaus wird das Unterscheiden der Signale verschiedener schwingender Saiten erschwert.

Das neu entwickelte Verfahren umgeht nun diese Schwierigkeiten. Quirin Unterreithmeier, Dr. Eva Weig und Professor Jörg Kotthaus vom Center for NanoScience (CeNS) und der Fakultät für Physik der LMU und dem Exzellenzcluster "Nanosystems Initiative Munich (NIM)" konstruierten ein NEMS, in dem Nanosaiten einzeln mittels dielektrischer Wechselwirkung angeregt werden - welche etwa auch für "elektrisch aufgeladene" Haare im Winter sorgt. Entsprechend diesem physikalischen Prinzip werden die Nanosaiten aus dem elektrisch nicht leitenden Material Silizium-Nitrid in einem elektrischen Feld zur Schwingung angeregt, und diese Schwingung dann gemessen.

Das zur Anregung erforderliche elektrische Wechselfeld wurde zwischen zwei Goldelektroden nahe der Saite erzeugt. Die Messung der Schwingung leisteten zwei weitere Elektroden. "Diesen Aufbau haben wir mittels Ätzverfahren hergestellt", berichtet Weig. "Er ließe sich aber ohne großen Aufwand in zehntausendfacher Wiederholung auf einem Chip realisieren. Durch eine geeignete Verschaltung muss nur die Adressierbarkeit der einzelnen Saiten gewährleistet sein." Alles in allem sollte dies eine technisch leichte Übung sein - und einen Durchbruch in der chemischen Analytik erlauben. Doch auch jenseits der "künstlichen Nase" sind Anwendungen denkbar. So könnten die Nanosaiten unter anderem in Handy-Uhren als Taktgeber zum Einsatz kommen. Auch als ultrascharfer Filter für elektrische Signale in der Messtechnik ließen sich die neuartigen Resonatoren verwenden.

Die Studie entstand im Rahmen des Exzellenzclusters "Nanosystems Initiative Munich (NIM)", das es sich zum Ziel gesetzt hat, funktionale Nanostrukturen für Anwendungen in der Informationsverarbeitung und den Lebenswissenschaften zu entwickeln, zu erforschen und zur Einsatzreife zu bringen. (NIM/suwe)

Publikation:
"Universal transduction scheme for nanomechanical systems based on dielectric forces",
Quirin P. Unterreithmeier, Eva M. Weig, Jörg P. Kotthaus
Nature, 23 April 2009
doi:10.1038/nature07932
Ansprechpartner:
Professor Jörg P. Kotthaus
Fakultät für Physik der LMU
Tel.: 089 / 2180 - 3737
E-Mail: kotthaus@cens.de
Dr. Peter Sonntag
Nanosystems Initiative Munich (NIM)
Tel.: 089 / 2180 - 5091
E-Mail: peter.sonntag@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/
http://www.nano-initiative-munich.de/press/press-material

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
22.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
22.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics