Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wo im Weddellmeer das Schelfeis weicht, starten Antarktische Glasschwämme richtig durch

12.07.2013
Der Abbruch und Zerfall des Larsen-A-Schelfeises im westlichen Weddellmeer der Antarktis im Jahr 1995 hat in weniger als zwei Jahrzehnten zu grundlegenden Veränderungen des Lebens am Meeresboden geführt.

Wie Biologen des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung, in der Titelgeschichte der aktuellen Ausgabe des Fachmagazins Current Biology berichten, profitierten vor allem Antarktische Glasschwämme vom Verschwinden des hunderte Meter dicken Eispanzers - und zwar in einem Ausmaß, das die Forscher überraschte.


Zwei Haarsterne haben sich auf deinem Glasschwamm niedergelassen. Links neben und hinter dem Schwamm sitzen zudem Schlangensterne. Foto aus der Untersuchungsregion im westlichen Weddellmeer. Foto: Thomas Lundälv, Alfred-Wegener-Institut

Trotz Wassertemperaturen von minus 2 Grad Celsius hatte sich die Anzahl der Tiere zwischen den Jahren 2007 und 2011 verdreifacht. Die Schwämme waren zudem erstaunlich schnell gewachsen und hatten Nahrungskonkurrenten vollständig verdrängt. Das Fazit: Die Lebensgemeinschaften am Grund des westlichen Weddellmeeres reagieren deutlich schneller und umfassender auf klimabedingte Veränderungen als bisher angenommen.

Antarktische Glasschwämme (Hexactinellida) galten bisher als Urtiere des Südpolarmeeres. So mancher Biologe mutmaßte, Glasschwämme würden so langsam wachsen, dass Exemplare mit einer Größe von zwei Metern rund 10.000 Jahre und älter sein müssten. Eine neue Studie unter der Leitung von Wissenschaftlern des Alfred-Wegener-Institutes (AWI), die in der aktuellen Ausgabe des Fachmagzins Current Biology erschienen ist, bringt diese Annahmen nun ins Wanken.

Die AWI-Biologen Laura Fillinger und Claudio Richter konnten gemeinsam mit Kollegen von der Universität Göteborg und dem Forschungsinstitut und Naturmuseum Senckenberg auf einer Polarstern-Expedition in die schwer zugängliche Region des ehemaligen Larsen-A-Schelfeises nachweisen, dass Glasschwämme innerhalb kurzer Zeit einen wahren Wachstumsschub erleben können. „Als wir im Jahr 2011 mit unserem ferngesteuerten Unterwasserroboter zum Meeresgrund in einer Tiefe von rund 140 Metern abtauchten, erlebten wir auf unseren Bildschirmen eine große Überraschung. Wo auf einer früheren Polarstern-Expedition im Jahre 2007 an gleicher Stelle sehr viele Seescheiden und nur vereinzelte Glasschwämme zu sehen waren, fanden wir vier Jahre später keine Seescheiden mehr. Diese Pionierarten waren komplett verschwunden. Stattdessen sahen wir dreimal so viele Glasschwämme, darunter viele junge Individuen“, berichtet Laura Fillinger, Erstautorin der Studie.

Bis zu diesem Zeitpunkt war man in der Fachwelt davon ausgegangen, dass sich Lebensgemeinschaften am Meeresboden der Antarktis nur sehr langsam verändern, weil das Wasser minus zwei Grad Celsius kalt ist und Futter aufgrund der regelmäßigen Eisbedeckung oft nur in einem begrenzten Umfang zur Verfügung steht. „Jetzt wissen wir, dass Glasschwämme regelrechte Boom-Zeiten durchleben können und dabei in der Lage sind, in kurzer Zeit neue Lebensräume zu besiedeln“, sagt Projektleiter Prof. Dr. Claudio Richter.

Das Verschwinden des hunderte Meter dicken Larsen-A-Schelfeis-Deckels, so Claudio Richter, muss für die Lebewesen am Meeresboden in etwa so gewesen sein, als hätte sich der Himmel über ihnen aufgetan. Wo zuvor Kälte, Dunkelheit und Futterknappheit regiert hatten, dringt plötzlich Sonnenlicht in die Tiefe. Plankton wächst in den oberen Wasserschichten und rieselt nach seinem Tod zum Meeresboden herab.

Glasschwämme ernähren sich von kleinstem Plankton, das sie aus dem Wasser filtern. Die Tiere werden bis zu zwei Meter groß und bieten mit ihren vasenähnlichen Körpern perfekte Versteck-, Laich- und Rückzugsmöglichkeiten für Fische, Wirbellose und viele andere Meeresbewohner. „Schwämme bilden wie Korallen eigene Lebensräume. Sie fungieren in gewisser Weise wie Städte am Meeresgrund. Wo sie wachsen, ist immer etwas los und deshalb zieht es andere Meeresbewohner dorthin“, sagt Claudio Richter.

Überall dort, wo sich an der Antarktischen Halbinsel die Schelfeise zurückziehen oder auflösen, entsteht neuer Raum für solche Unterwasserwelten. Ob die Glasschwämme deshalb jedoch auch zu den Profiteuren des Klimawandels zählen, können die Wissenschaftler noch nicht abschließend beurteilen. Laura Fillinger: „Für Vorhersagen gibt es noch zu viele Unbekannte. Eine ist zum Beispiel die Frage nach dem Einfluss von Konkurrenten: Gegenwärtig sehen wir am Meeresboden einen Kampf um die besten Plätze. Oder die Frage nach den Räubern: Bei unserer Tauchfahrt im Jahr 2011 haben wir kaum Schnecken und Seesterne gesehen, die den Glasschwämmen gefährlich werden können. Es kann aber durchaus sein, dass diese gefräßigen Räuber den Schwämmen auf dem Fuße folgen und diese wieder in die Schranken weisen.“

Die Meeresbiologen des Alfred-Wegener-Institutes werden die Veränderungen der Lebensgemeinschaften im westlichen Weddellmeer weiter beobachten. Im Januar dieses Jahres mussten die geplanten Tauchfahrten in der Region des ehemaligen Larsen-A-Schelfeises aufgrund des dichten Packeises im Weddellmeer zwar abgesagt werden. Auf künftigen Polarstern-Fahrten in diesen Teil der Antarktis aber hoffen Claudio Richter und sein Team auf bessere Eisverhältnisse, um vor Ort mit neuen Untersuchungsmethoden mehr über den Lebenszyklus der Glasschwämme herauszufinden.

Glossar:
Was sind Schelfeise?
Schelfeis nennt man den auf dem Meer schwimmenden Fortsatz eines Gletschers - also jenen Teil des Eisstromes, der nicht mehr auf dem Land oder Meeresgrund aufliegt. Die bekanntesten Schelfeise gibt es in der Antarktis, wo mit dem Filchner-Ronne-Schelfeis (rund 422.000 Quadratkilometer Fläche) und dem Ross-Schelfeis (rund 473.000 Quadratkilometer Fläche) auch die zwei größten ihrer Art zu finden sind. Die Dicke der Eisplatten kann sich von Schelfeis zu Schelfeis unterscheiden - die Spanne reicht von 50 und 600 Meter Eisdicke.
Larsen-A-Schelfeis
„Larsen-A“ nannten Forscher das kleinste und nördlichste der drei Larsen-Schelfeise, die einst von der Ostküste der Antarktischen Halbinsel in das westliche Weddellmeer hineinreichten. Im Januar 1995 zerfiel der Eispanzer von Larsen-A während eines Sturmes gemeinsam mit dem weiter nördlich befindlichen Prinz-Gustav-Schelfeis innerhalb weniger Tage auf einer Fläche von rund 2000 Quadratkilometern. Seine Überreste trieben damals als Armada kleiner Eisberg in das westliche Weddellmeer. Dieses Naturschauspiel machte weltweit Schlagzeilen, denn nie zuvor hatten Wissenschaftler ein Schelfeis so schnell auseinanderbrechen sehen. Das Ereignis führte Forschern erstmals vor Augen, dass Klimaveränderungen zu einem nahezu blitzartigen und vollständigen Verlust von Schelfeisen führen können. Die Region des ehemaligen Larsen-A-Schelfeises ist noch heute oft von Packeis bedeckt und deshalb für Forschungsschiffe wie Polarstern nur schwer zu erreichen.
Hinweise für Redaktionen:
Die Studie ist unter folgendem Originaltitel erschienen:
Laura Fillinger, Dorte Janussen, Thomas Lundälv, Claudio Richter: Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse, Current Biology 23, (11 July 2013), doi:10.1016/j.cub.2013.05.051
Druckbare Fotos sowie Videomaterial von einer Tauchfahrt finden Sie bis zum Ablauf der Sperrfrist online unter: http://www.awi.de/de/aktuelles_und_presse/pressemitteilungen/fotos_mit

_sperrfrist/2013/pressemeldung_2013_11_juli/

Ihre wissenschaftlichen Ansprechpartner am Alfred-Wegener-Institut sind:
o Prof. Dr. Claudio Richter (Tel: +49 (0)471- 48 31-1304, E-Mail: Claudio.Richter@awi.de),

o Laura Fillinger (vorerst nur via E-Mail: Laura.Fillinger@awi.de)

In der Abteilung Kommunikation und Medien steht Ihnen Sina Löschke (Tel: 0471-48 31-20 08, E-Mail: medien@awi.de) für Rückfragen zur Verfügung.

Folgen Sie dem Alfred-Wegener-Institut auf Twitter (https://twitter.com/AWI_de) und Facebook (http://www.facebook.com/AlfredWegenerInstitut). So erhalten Sie alle aktuellen Nachrichten sowie Informationen zu kleinen Alltagsgeschichten aus dem Institutsleben.

Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der mittleren und hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der 18 Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Ralf Röchert | idw
Weitere Informationen:
http://www.awi.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Bluthochdruckschalter in der Nebenniere
20.02.2018 | Forschungszentrum Jülich GmbH

nachricht Markierung für Krebsstammzellen
20.02.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics