Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasserstoffbrücken: Forscher finden neuen Mechanismus

04.09.2008
Mittels Photoelektronenspektroskopie zeigten Forscher vom BESSY und vom Max-Born-Institut, dass Hydroxidionen in wässrigen Lösungen auch über ihr Proton Wasserstoffbrückenbindungen ausbilden können. Die Wissenschaftler folgern daraus, dass Hydroxidionen im Wasser ihre Ladung von Molekül zu Molekül "weiterreichen".

Wasser ist allgegenwärtig und die Grundlage allen Lebens auf der Erde. Die Vorgänge, die sich auf molekularer Ebene im Wasser abspielen, sind jedoch noch immer nicht in allen Einzelheiten verstanden. Bernd Winter und Kollegen vom Berliner Elektronenspeicherring BESSY und vom Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) konnten jetzt eine bislang unbekannte Eigenschaft des negativ geladenen Ions des Wassers, des Hydroxidions (OH-), nachweisen. Sie berichten darüber in der aktuellen Ausgabe von Nature (E.F. Aziz et al, Nature, 455, 89-91,2008).


Schema der Bildung einer Wasserstoffbrückenbindung eines Hydroxidions mit einem Wassermolekül. Abbildung: BESSY

Die Forscher fanden heraus, dass Hydroxidionen in der Lage sind, auch über ihr Wasserstoffatom Wasserstoffbrücken auszubilden. Bisher nahm man an, dass Hydroxidionen nur als sogenannte Protonenakzeptoren fungieren können, das heißt ihr negativ geladenes Sauerstoffatom tritt mit positiven Wasserstoffatomen (Protonen) der umgebenden Wassermoleküle in Wechselwirkung. Winter und Kollegen wiesen nun nach, dass Hydroxidionen in einer wässrigen Natriumhydroxidlösung, nach Anregung durch Photonen Energie auf benachbarte Wassermoleküle übertragen können, sofern sie in einer ganz bestimmten Weise um das Hydroxidion angeordnet sind. Ersetzten die Forscher in ihren Versuchen die Hydroxidionen durch die ebenfalls negativ geladenen Chlorid- oder Fluoridionen, konnten sie das Phänomen nicht beobachten.

Daraus schlossen sie, dass die im Spektrum beobachteten Resonanzmuster von der schwächeren 'Donor' Wasserstoffbrückenbindung herrührten. Diese Unterscheidung lässt sich für die hydratisierten Halogenionen nicht machen. Mit anderen Worten, Halogenionen "wandern" durch die Lösung, bei Hydroxidionen wird die Ladung von Molekül zu Molekül "weitergereicht" (Strukturdiffusion).

Für ihre Untersuchungen nutzten die Forscher die Photoelektronenspektroskopie und als Photonenquelle die Synchrotronstrahlung. Bei dem Verfahren wird die wässrige Probe mit Photonen einer genau definierten Energie angeregt. Je nach Energie können die Photonen die Elektronen der Moleküle auf ein höheres Energieniveau heben oder sie sogar aus den Molekülen "heraus katapultieren". Durch Messung der Energie der freiwerdenden Elektronen lassen sich dann Aussagen über die elektronischen Eigenschaften des Moleküls und über den Aufbau von chemischen Bindungen treffen.

Winter und seine Kollegen sind die ersten, die Photoelektronenspektroskopie auch auf wässrige Lösungen anwenden können. Sie mussten dabei das Problem umgehen, dass sich die Energien von Photoelektronen aufgrund des hohen Dampfdruckes von Wasser nicht detektieren lassen. Das gelingt erst, wenn man das Wasservolumen auf die Größe eines nur wenige Mikrometer dünnen kontinuierlichen Strahls reduziert. Hat dieser sogenannte Microjet eine genügend hohe Geschwindigkeit, lässt sich dann auch einem vorzeitigen Gefrieren in der Vakuumkammer zuvorkommen.

Kontakt:
Dr. Bernd Winter,
Tel.: 030 6392 5001,
E-Mail: bernd.winter@bessy.de

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.bessy.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit