Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasserstoff aus dem Reagenzglas: Bochumer Forscher nutzen Wasserstofffabrik der Grünalge

11.01.2010
Wasserstoff gilt als Energieträger der Zukunft: Ohne Ausstoß von CO2 und Schadstoffen lässt sich daraus Strom gewinnen.

Die umweltfreundliche Herstellung ausreichender Mengen Wasserstoffs beschäftigt daher die Forschung seit langem. Als mikroskopisch kleine Fabrik steht dabei die Grünalge Chlamydomonas reinhardtii im Mittelpunkt, die unter Stress Wasserstoff bilden kann. Bochumer Biologen ist es jetzt gelungen, die dafür verantwortlichen Bestandteile der Alge zu isolieren und die Produktion ins Reagenzglas zu verlegen.

"Dieses natürliche System erzeugt sechsmal so viel Wasserstoff wie ein halb-artifizielles, über das amerikanische Kollegen erst kürzlich berichtet haben", sagt Arbeitsgruppenleiter Prof. Dr. Thomas Happe. Darüber hinaus klärten die Forscher die Reaktion im Detail auf und ebneten so den Weg zur Optimierung der Wasserstoffausbeute. Die Forscher berichten im Journal of Biological Chemistry.

Notlösung für die Alge

Für die Grünalge ist die Wasserstoffproduktion eine Notlösung. Während sie die durch die Photosynthese gewonnene Energie unter normalen Bedingungen in Zellvermehrung und Wachstum investiert, fehlen ihr dafür bei Nährstoffmangel die Bausteine. Um die bei der Photosynthese aus Lichtenergie gewonnenen Elektronen trotzdem loszuwerden, setzt die Alge sie mit Hilfe eines speziellen Enzyms, der Hydrogenase, mit Protonen zu Wasserstoff um, den sie an ihre Umgebung abgibt. Schon lange experimentiert die Forschung mit Algenreaktoren, die auf diese Weise Wasserstoff herstellen. "Dieser langgehegte Traum der Forschung von der Erschließung der Solarenergie konnte bislang aber leider nur sehr ineffektiv umgesetzt werden", erklärt Prof. Happe.

Drei Komponenten im Reagenzglas genügen

Der Bochumer Arbeitsgruppe um Prof. Happe ist es nun in Zusammenarbeit mit Kollegen der Universität Münster gelungen, den bislang nur unzureichend verstandenen grünalgenspezifischen Prozess der Wasserstoffbildung durch Kombination der Hydrogenase mit ausgewählten Proteinen der Photosynthesekette im Reagenzglas nachzubilden. Sie isolierten dafür getrennt voneinander die für die Lichtaufnahme erforderlichen Photosynthesekomplexe, das als Elektronenvermittler dienende Ferredoxin PetF und die wasserstoffproduzierende [FeFe]-Hydrogenase HydA1, die sie dann unter Belichtung vereinten. "Bereits nach wenigen Minuten ist eine deutlich lichtabhängige Wasserstoffbildung feststellbar, die nur einsetzt, wenn alle drei Komponenten enthalten sind", so Prof. Happe.

Sechsmal mehr Wasserstoff als in halb-artifziellen Systemen

Die Wasserstoffbildung durch die natürlichen Komponenten im Reagenzglas zeigte sich dabei erstaunlich effektiv im Vergleich mit anderen Ansätzen. Erst kürzlich berichteten US-amerikanische Forscher aus Tennessee von der Etablierung eines semiartifiziellen Systems zur lichtgetriebenen Wasserstoffproduktion mit flächig aufgelagerten Photosynthesekomplexen und Platin-Nanopartikeln, welche die Katalysatorfunktion einer Hydrogenase ersetzen. Ihren Angaben zufolge liegt die Ausbeute, die mit einer großtechnischen Anlage unter optimalen Bedingungen gewonnen werden könnte, um eine Größenordnung über der Kraftstoffausbeute, die heute mit landwirtschaftlichen Mitteln in der Produktion von Biodiesel oder Bioethanol erzielt werden kann [Iwuchukwu et al.; 2009; Nature Nanotechnology]. "Die in dieser Studie erreichte Wasserstoffbildungsrate von hochgerechnet drei Litern pro Gramm Chlorophyll und Tag wird vom natürlichen System der Grünalgen bereits im Reagenzglas um das sechsfache übertroffen", entgegnet Prof. Happe.

Wechselwirkung im Detail geklärt

Ferner gelang es der Bochumer Arbeitsgruppe, den genauen Kopplungsmechanismus von Photosynthese und Wasserstoff-bildendem Enzym experimentell auf molekularer Ebene aufzuklären. Von entscheidender Bedeutung scheinen dabei hochgradig spezifische Ladungswechselwirkungen zwischen den Proteinoberflächen von Ferredoxin und Hydrogenase zu sein. "Mit dem Verständnis dieser Protein-Protein-Wechselwirkung eröffnen sich nun verschiedene Möglichkeiten zur Optimierung der natürlichen Wechselwirkungseffizienz beider Proteine", schätzt Prof. Happe. "Das könnte in Zukunft sowohl mit dem lebenden Organismus als auch mit enzymbasierten semiartifiziellen Systemen eine wirtschaftlich interessante und ökologisch vorbildliche Wasserstoff-Produktion ermöglichen."

Titelaufnahme

Martin Winkler, Sebastian Kuhlgert, Michael Hippler and Thomas Happe: Characterization of the Key Step for Light-driven Hydrogen Evolution in Green Algae. In: JBC, VOLUME 284, NUMBER 52, DECEMBER 25, 2009, DOI 10.1074/jbc.M109.053496

Weitere Informationen

Prof. Dr. Thomas Happe, AG: Photobiotechnologie, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-27026, E-Mail: Thomas.Happe@rub.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher beschreiben neuartigen Antikörper als möglichen Wirkstoff gegen Alzheimer
22.08.2017 | Martin-Luther-Universität Halle-Wittenberg

nachricht Virus mit Eierschale
22.08.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

22.08.2017 | Physik Astronomie

Forscher beschreiben neuartigen Antikörper als möglichen Wirkstoff gegen Alzheimer

22.08.2017 | Biowissenschaften Chemie

Virus mit Eierschale

22.08.2017 | Biowissenschaften Chemie