Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasserstoff aus dem Reagenzglas: Bochumer Forscher nutzen Wasserstofffabrik der Grünalge

11.01.2010
Wasserstoff gilt als Energieträger der Zukunft: Ohne Ausstoß von CO2 und Schadstoffen lässt sich daraus Strom gewinnen.

Die umweltfreundliche Herstellung ausreichender Mengen Wasserstoffs beschäftigt daher die Forschung seit langem. Als mikroskopisch kleine Fabrik steht dabei die Grünalge Chlamydomonas reinhardtii im Mittelpunkt, die unter Stress Wasserstoff bilden kann. Bochumer Biologen ist es jetzt gelungen, die dafür verantwortlichen Bestandteile der Alge zu isolieren und die Produktion ins Reagenzglas zu verlegen.

"Dieses natürliche System erzeugt sechsmal so viel Wasserstoff wie ein halb-artifizielles, über das amerikanische Kollegen erst kürzlich berichtet haben", sagt Arbeitsgruppenleiter Prof. Dr. Thomas Happe. Darüber hinaus klärten die Forscher die Reaktion im Detail auf und ebneten so den Weg zur Optimierung der Wasserstoffausbeute. Die Forscher berichten im Journal of Biological Chemistry.

Notlösung für die Alge

Für die Grünalge ist die Wasserstoffproduktion eine Notlösung. Während sie die durch die Photosynthese gewonnene Energie unter normalen Bedingungen in Zellvermehrung und Wachstum investiert, fehlen ihr dafür bei Nährstoffmangel die Bausteine. Um die bei der Photosynthese aus Lichtenergie gewonnenen Elektronen trotzdem loszuwerden, setzt die Alge sie mit Hilfe eines speziellen Enzyms, der Hydrogenase, mit Protonen zu Wasserstoff um, den sie an ihre Umgebung abgibt. Schon lange experimentiert die Forschung mit Algenreaktoren, die auf diese Weise Wasserstoff herstellen. "Dieser langgehegte Traum der Forschung von der Erschließung der Solarenergie konnte bislang aber leider nur sehr ineffektiv umgesetzt werden", erklärt Prof. Happe.

Drei Komponenten im Reagenzglas genügen

Der Bochumer Arbeitsgruppe um Prof. Happe ist es nun in Zusammenarbeit mit Kollegen der Universität Münster gelungen, den bislang nur unzureichend verstandenen grünalgenspezifischen Prozess der Wasserstoffbildung durch Kombination der Hydrogenase mit ausgewählten Proteinen der Photosynthesekette im Reagenzglas nachzubilden. Sie isolierten dafür getrennt voneinander die für die Lichtaufnahme erforderlichen Photosynthesekomplexe, das als Elektronenvermittler dienende Ferredoxin PetF und die wasserstoffproduzierende [FeFe]-Hydrogenase HydA1, die sie dann unter Belichtung vereinten. "Bereits nach wenigen Minuten ist eine deutlich lichtabhängige Wasserstoffbildung feststellbar, die nur einsetzt, wenn alle drei Komponenten enthalten sind", so Prof. Happe.

Sechsmal mehr Wasserstoff als in halb-artifziellen Systemen

Die Wasserstoffbildung durch die natürlichen Komponenten im Reagenzglas zeigte sich dabei erstaunlich effektiv im Vergleich mit anderen Ansätzen. Erst kürzlich berichteten US-amerikanische Forscher aus Tennessee von der Etablierung eines semiartifiziellen Systems zur lichtgetriebenen Wasserstoffproduktion mit flächig aufgelagerten Photosynthesekomplexen und Platin-Nanopartikeln, welche die Katalysatorfunktion einer Hydrogenase ersetzen. Ihren Angaben zufolge liegt die Ausbeute, die mit einer großtechnischen Anlage unter optimalen Bedingungen gewonnen werden könnte, um eine Größenordnung über der Kraftstoffausbeute, die heute mit landwirtschaftlichen Mitteln in der Produktion von Biodiesel oder Bioethanol erzielt werden kann [Iwuchukwu et al.; 2009; Nature Nanotechnology]. "Die in dieser Studie erreichte Wasserstoffbildungsrate von hochgerechnet drei Litern pro Gramm Chlorophyll und Tag wird vom natürlichen System der Grünalgen bereits im Reagenzglas um das sechsfache übertroffen", entgegnet Prof. Happe.

Wechselwirkung im Detail geklärt

Ferner gelang es der Bochumer Arbeitsgruppe, den genauen Kopplungsmechanismus von Photosynthese und Wasserstoff-bildendem Enzym experimentell auf molekularer Ebene aufzuklären. Von entscheidender Bedeutung scheinen dabei hochgradig spezifische Ladungswechselwirkungen zwischen den Proteinoberflächen von Ferredoxin und Hydrogenase zu sein. "Mit dem Verständnis dieser Protein-Protein-Wechselwirkung eröffnen sich nun verschiedene Möglichkeiten zur Optimierung der natürlichen Wechselwirkungseffizienz beider Proteine", schätzt Prof. Happe. "Das könnte in Zukunft sowohl mit dem lebenden Organismus als auch mit enzymbasierten semiartifiziellen Systemen eine wirtschaftlich interessante und ökologisch vorbildliche Wasserstoff-Produktion ermöglichen."

Titelaufnahme

Martin Winkler, Sebastian Kuhlgert, Michael Hippler and Thomas Happe: Characterization of the Key Step for Light-driven Hydrogen Evolution in Green Algae. In: JBC, VOLUME 284, NUMBER 52, DECEMBER 25, 2009, DOI 10.1074/jbc.M109.053496

Weitere Informationen

Prof. Dr. Thomas Happe, AG: Photobiotechnologie, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-27026, E-Mail: Thomas.Happe@rub.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verteidigung um fast jeden Preis
14.12.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

nachricht Mitochondrien von Krebszellen im Visier
14.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten