Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasserstoff produzierendes Enzym mit künstlichem aktivem Zentrum bestückt

27.06.2013
Biologie und Chemie im Konzert
Forscherteam aus Grenoble, Mülheim und Bochum berichtet in „Nature“

Wasserstoff gilt als Energieträger der Zukunft und lässt sich effizient mit speziellen Enzymen, den Hydrogenasen produzieren. Diese Enzyme herzustellen, ist jedoch schwierig.


Aktives Zentrum
Grafik: MPI CEC


So entsteht die Hydrogenase: Das chemisch synthetisierte aktive Zentrum lud das Forscherteam zunächst auf ein Reifungsprotein. Von dort wurde das aktive Zentrum auf eine Vorstufe der Hydrogenase übertragen. Dieses Enzym setzt Protonen und Elektronen zu Wasserstoff um. Grafik: Julian Esselborn

„In einer außergewöhnlichen Zusammenarbeit von Biologen und Chemikern ist es uns jetzt zum ersten Mal gelungen, eine halbsynthetische Hydrogenase mit voller Aktivität herzustellen“, sagt Prof. Dr. Thomas Happe von der AG Photobiotechnologie der Ruhr-Universität Bochum. Die Ergebnisse veröffentlichte ein Team um Prof. Marc Fontecave vom Collège de France in Grenoble, Prof. Wolfgang Lubitz vom MPI Mülheim sowie Prof. Thomas Happe in der Fachzeitschrift „Nature“.

Kompliziertes Reaktionszentrum macht Synthese im Labor schwierig

„Unser Traum ist es, Wasserstoff – zum Beispiel für Brennstoffzellen – nur mit biologischen Mitteln und Sonnenenergie herzustellen“, sagt Thomas Happe. [FeFe]-Hydrogenasen aus der Grünalge Chlamydomonas reinhardtii katalysieren die Synthese von Wasserstoff (H2) hocheffizient und kommen dabei, im Gegensatz zu herkömmlichen Katalysatoren, ohne teure Edelmetalle wie Platin aus. Die Hydrogenasen aus Grünalgen zu gewinnen oder künstlich im Labor herzustellen, ist jedoch zeit- und kostenintensiv.
„Das Reaktionszentrum der [FeFe]-Hydrogenasen ist sehr kompliziert aufgebaut“, erklärt Happe. Die Wasserstoffproduktion findet an einem Cluster aus zwei Eisen- und zwei Schwefel-Atomen statt. Daran gebunden sind Kohlenstoffmonoxid (CO) und Cyanid (CN-) sowie ein Molekül, das eine Brücke zwischen den beiden Eisen-Atomen bildet. In der Natur wird das Zentrum durch mehrere spezielle Reifungsproteine synthetisiert; dieser Prozess ist bislang unvollständig erforscht. „Versuche von Chemikern, das Zentrum chemisch zu imitieren, führten bisher nicht zur gewünschten katalytischen Leistung“, so der Bochumer Biologe.

Halbsynthetisches Enzym produziert Wasserstoff mit voller Aktivität

Das Forscherteam in Grenoble stellte chemisch drei verschiedene Varianten von Eisen-Clustern her, die sich im „Brückenmolekül“ unterschieden. Die Cluster luden sie auf ein Reifungsprotein, das in der Grünalge normalerweise an der Synthese der [FeFe]-Hydrogenase beteiligt ist. Die RUB-Biologen brachten dieses beladene Reifungsprotein mit einer Vorstufe der Chlamydomonas-Hydrogenase zusammen, der das katalytisch aktive Eisen-Cluster fehlte.

Mit hoch empfindlichen spektroskopischen Messungen verfolgten die Forscher in Mülheim diesen Prozess. So wiesen sie nach, dass alle drei künstlich hergestellten Cluster auf die Enzym-Vorstufe übertragen werden können. Messungen am MPI Mülheim und an der RUB bestätigten, dass nur eines der künstlichen Cluster zu einem voll funktionsfähigen Enzym führte, welches effizient Wasserstoff erzeugt. In der spektroskopischen Analyse war diese halbsynthetische Hydrogenase von dem natürlich vorkommenden Protein nicht zu unterscheiden. „Nebenbei haben wir auch noch einen wissenschaftlichen Disput über die genaue Struktur des ‚Brückenmoleküls‘ am Eisen-Cluster beigelegt“, sagt Agnieszka Adamska, Wissenschaftlerin am MPI für Chemische Energiekonversion in Mülheim. „Die Struktur, die vor einigen Jahren in unserem Labor vorgeschlagen wurde, ist jetzt bestätigt“.

Forschung für die Zukunft: Enzym und aktives Zentrum verändern

Die Forscher haben bereits verschiedene Modifikationen an dem Enzym vorgenommen und zum Beispiel untersucht, welche Effekte sie auf die katalytische Aktivität haben. In Zukunft wollen sie auch das anorganische aktive Zentrum verändern und die Auswirkungen beobachten. „Das ist eine einmalige Chance, die Wasserstoffproduktion zu erforschen und ihre Effizienz zu steigern“, resümiert Prof. Happe.

Förderung

Die Volkswagen Stiftung fördert Thomas Happe unter dem Titel „LigH2t“.

Titelaufnahme

G. Berggren, A. Adamska, C. Lambertz, T. Simmons, J. Esselborn, M. Atta, S. Gambarelli, J.M. Mouesca, E. Reijerse, W. Lubitz, T. Happe, V. Artero, M. Fontecave (2013): Biomimetic assembly and activation of [FeFe]-hydrogenases, Nature, DOI: 10.1038/nature12239

Weitere Informationen

Prof. Dr. Thomas Happe, AG Photobiotechnologie, Lehrstuhl Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-27026, E-Mail: thomas.happe@rub.de

Angeklickt

Frühere Presseinformation zur [FeFe]-Hydrogenase
http://aktuell.ruhr-uni-bochum.de/pm2012/pm00365.html.de

Frühere Presseinformation zur lichtgetriebenen Wasserstoffherstellung
http://aktuell.ruhr-uni-bochum.de/pm2012/pm00031.html.de

Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie