Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasserstoff aus Sonnenlicht – aber im Dunkeln

14.12.2016

Graphitisches Kohlenstoffnitrid kann für die künstliche Photosynthese Elektronen erzeugen, speichern und zeitverzögert wieder freisetzen

Die Speicherung von Sonnenenergie und ihre bedarfsgerechte Freisetzung sind nach wie vor große Herausforderungen für die künstliche Photosynthese. Preiswertes graphitisches Kohlenstoffnitrid gilt derzeit als eines der vielversprechendsten neuen photokatalytischen Materialien.


Tagsüber Energie speichern, um eine Dunkelreaktion zur Wasserstoffproduktion betreiben zu können

(c) Wiley-VCH

Wissenschaftler haben jetzt eine modifizierte Form entwickelt, welche durch Licht erzeugte Elektronen speichern kann, bis sie in einer "Dunkelreaktion" für die Produktion von Wasserstoff verbraucht werden. Über diesen biomimetischen Photosyntheseansatz berichten sie in der Zeitschrift Angewandte Chemie.

Die Natur teilt die Photosynthese auf in eine Licht-Reaktion, die Elektronen und "Löcher" durch Sonnenenergie erzeugt, und eine Dunkel-Reaktion, welche die Energiestoffe der Zelle generiert. Diese Stoffe transportieren und speichern die Energie.

Indem dieser zweite, zeitverzögerte Prozess unabhängig vom Sonnenlicht abläuft, kann der Gesamtprozess den Tag-und-Nacht-Rhythmus ausgleichen. Für menschengemachte Systeme stellt die Nacht dagegen eine lästige Unterbrechung der lichtabhängigen Energieproduktion dar. Ein System, das den Bioprozess direkt nachahmt, müsste die lichterzeugten Elektronen speichern können, um sie später unabhängig von der Primärlichtquelle freisetzen zu können.

Solarzellen generieren die Elektronen entweder für den lokalen Verbrauch oder für die Einspeisung in das Stromnetz. Als Speichermedien für die elektrische Energie werden dagegen Batterien oder Kraftstoffe wie Wasserstoff oder Methan verwendet, die wiederum durch elektrochemische Reaktionen erzeugt wurden.

Alternativ könnte man auch die natürliche Photosynthese effektiver nachahmen und nach einem Material suchen, das die photokatalytischen Elektronen gleich nach der Erzeugung speichern und nach Bedarf wieder abgeben kann. Bettina Lotsch vom Max-Planck-Institut für Festkörperforschung in Stuttgart und Kollegen aus der Schweiz und Großbritannien entwickelten dafür ein neuartiges Kohlenstoffnitrid-Polymer, dessen Vorstofe "Melon" für seine photokatalytischen und halbleitenden Eigenschaften bereits bekannt ist.

Das modifizierte Kohlenstoffnitrid ist ein gelblicher Festkörper, der durch Beleuchtung seine Farbe ändert. "Die Farbe dieses Polymers schlägt unter Einstrahlung von Licht und in der Gegenwart von bestimmten Elektronendonoren in Sauerstoff-freier Umgebung von gelb nach blau um", berichten die Wissenschaftler. Dieses "blaue Radikal" enthält die eingefangenen Elektronen.

Wird das Licht ausgeschaltet und für die Wasserstoffentwicklung ein entsprechender Cokatalysator zugegeben, so wird das Polymer wieder gelb. Die gespeicherten Elektronen werden dabei für die katalytische Wasserstoffproduktion verwendet. Diese bemerkenswerten Ergebnisse zeigen, dass es durch das speziell entwickeltes Material möglich ist, den Licht einfangenden, Elektronen erzeugenden Teilprozess von der Weiterleitung und Freisetzung der Elektronen zu entkoppeln. Dies könnte den Prozess der Erzeugung speicherbarer solarer Brennstoffe erheblich vereinfachen, indem es ihn von der Periodizität der Sonneneinstrahlung entkoppelt.

Angewandte Chemie: Presseinfo 44/2016

Autor: Bettina V. Lotsch, Max Planck Institute for Solid State Research (Germany), https://www.fkf.mpg.de/171964/Prof_Dr_Bettina_V_Lotsch

Link zum Originalbeitrag: http://dx.doi.org/10.1002/ange.201608553

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Weitere Informationen:

http://presse.angewandte.de

Dr. Karin J. Schmitz | Gesellschaft Deutscher Chemiker e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von der Genexpression zur Mikrostruktur des Gehirns
24.04.2018 | Forschungszentrum Jülich

nachricht Nano-Ampel zeigt Risiko an
24.04.2018 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von der Genexpression zur Mikrostruktur des Gehirns

24.04.2018 | Biowissenschaften Chemie

Bestrahlungserfolg bei Hirntumoren lässt sich mit kombinierter PET/MRT vorhersagen

24.04.2018 | Medizintechnik

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics