Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Wasserspinne und ihre Taucherglocke

09.06.2011
Forscher finden heraus, wie „Silberspinnen“ unter Wasser atmen

Wasserspinnen (Argyroneta aquatica) verbringen ihr gesamtes Leben unter Wasser und kommen nur an die Oberfläche, um ihre Taucherglocke mit frischer Luft zu befüllen. Bisher wusste niemand, wie lange die Spinnen untergetaucht bleiben können.


Argyroneta aquatica frisst Fliege
Foto: Stefan K. Hetz


Argyroneta aquatica
Foto: Stefan K. Hetz

Roger Seymour, von der University of Adelaide, und Stefan Hetz, Wissenschaftler am Institut für Biologie der Humboldt-Universität zu Berlin, fanden durch Messung des Sauerstoffgehalts heraus, dass die Wände der Taucherglocke sich wie eine physikalische Kieme verhalten. Die Wasserspinnen müssen nur einmal am Tag kurz an die Oberfläche kommen und die Luft in der Taucherglocke ergänzen. Die Untersuchung der beiden Wissenschaftler, wie Wasserspinnen mithilfe ihrer Taucherglocke den zur Atmung benötigten Sauerstoff aus dem Wasser gewinnen, ist in The Journal of Experimental Biology veröffentlicht.

Schaut man in einen Tümpel, so fallen die vielen unterschiedlichen Insektenarten auf, die sich an das Leben im Wasser angepasst haben. Den Spinnen ist dies nur bei einer Art, der Wasserspinne, gelungen. Diese wird im älteren deutschen Sprachgebrauch aufgrund ihrer silbrig erscheinenden Behaarung auch als „Silberspinne“ bezeichnet. Diese Behaarung dient zum Festhalten einer Luftblase, die dazu verwendet wird, eine Taucherglocke, die zwischen Wasserpflanzen mithilfe von Spinnseide errichtet wird, mit Luft von der Oberfläche zu befüllen. In dieser Taucherglocke verbringen die Spinnen ihr gesamtes Leben, selbst der Eikokon wird mit in diese Taucherglocke integriert. „Leider werden die Biotope, in denen sich diese Spinne finden lässt, immer seltener“, berichtet Stefan Hetz. Nachdem die nötigen Genehmigungen zum Fang der geschützten Tiere eingeholt waren, hatten die beiden Forscher im Fluss Eider Erfolg. Zurück im Labor reproduzierten sie die Umweltbedingungen im warmen stehenden und pflanzenreichen Wasser, um herauszufinden, wie viel Sauerstoff die Spinnen an einem warmen sonnigen Tag verbrauchen und welche Rolle die Taucherglocke dabei spielt.

Nachdem die Spinnen bereitwillig ihre glänzenden Taucherglocken errichtet hatten, wurden winzige Sauerstoffsensoren, sogenannte Optoden, vorsichtig in den Luftraum versenkt. Die Tiere fühlten sich von den Sensoren nicht belästigt, und so konnten die Veränderungen des Sauerstoffgehalts problemlos gemessen werden. Indem die Taucherglocken mit der Spinne als Respirometer verwendet wurden und durch Zugabe von genauen Volumina von Stickstoff oder Sauerstoff der Inhalt der Taucherglocke bestimmt wurde, fanden die Forscher heraus, dass die Wand der Taucherglocke genug Sauerstoff durchlässt, um den geringen Sauerstoffbedarf der Spinne zu decken. Die Spinne kann ruhig auf vorbeikommende Beute warten. Das Volumen der Taucherglocke nimmt aber ab, weil sich der Stickstoff aus der Blase im umgebenden Wasser löst, was die Spinne dazu veranlasst, an der Oberfläche neue Luftblasen zum Befüllen der Taucherglocke zu holen. Anders als in älterer Literatur dargestellt ergab sich aus den Messungen und Berechnungen der Forscher überraschend, dass dieses Verhalten nur einmal am Tag nötig ist. „Es ist demnach ein Vorteil für die Spinnen, nur einmal am Tag an die Oberfläche zu kommen und damit den größten Teil der Zeit für Fressfeinde unauffällig in der Taucherglocke sitzen zu können“, erklären die Forscher.

Seymour, R. S. and Hetz, S. K. (2011). The diving bell and the spider: the physical gill of Argyroneta aquatica. J. Exp. Biol. 214, 2175-2181.

http://jeb.biologists.org/content/214/13/2175.abstract

Auf Wunsch stellen wir Ihnen gerne Bildmaterial zur Verfügung. Anfragen unter:
Tel.: 030 2093-2345
E-Mail: pr@hu-berlin.de
WEITERE INFORMATIONEN
Dr. Stefan K. Hetz
Humboldt-Universität zu Berlin
Institut für Biologie
Philippstrasse 13
10115 Berlin
Tel.: 030 2093-6178
E-Mail: stefan.k.hetz@rz.hu-berlin.de

Constanze Haase | idw
Weitere Informationen:
http://www.activetouch.de/index.php?id=38
http://www.hu-berlin.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen
12.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik