Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasserentsalzung - umweltschonend und effizient

24.07.2014

Aachener Forscherteam entwickelt hocheffizientes und kontinuierliches Verfahren, das auf neuartigen Elektroden aus Kohlenstoffpartikeln basiert.

Die Weltmeere enthalten 95 Prozent der irdischen Wasserressourcen. Kein Wunder also, dass weltweit mehr und mehr Länder auf die Entsalzung von Meerwasser setzen, um kostbares Trinkwasser zu gewinnen.


Desalination

Wissenschaftlern und Wissenschaftlerinnen des DWI – Leibniz-Institut für Interaktive Materialien und der Aachener Verfahrenstechnik (RWTH Aachen University) gelang nun die Entwicklung einer umweltfreundlichen und zugleich sehr effizienten Technologie zur Wasserentsalzung.

Das elektrochemische Verfahren basiert auf neuartigen Elektroden aus Kohlenstoff-Partikeln und ermöglicht eine kontinuierliche Regeneration der Elektroden während des laufenden Entsalzungsprozesses (Electrochemistry Communications, 2014).

Die aktuell gängigste Methode zur Entsalzung von Wasser ist die Umkehrosmose. Unter hohem Druck von 60-80 bar wird Meerwasser gewissermaßen filtriert und durch eine feine Membran gepresst, die das Salz zurückhält.

Neben dem Energieverbrauch ist auch die geringe Ausbeute an entsalztem Wasser von gerade einmal 45-50 Prozent eine wesentliche technische Hürde. Elektrochemische Prozesse bieten hier eine vielversprechende Alternative.

Die Bestandteile des Salzes, Anionen und Kationen, werden von Elektroden an einer internen Oberfläche kapazitiv aufgenommen und auf diese Weise aus dem Wasser entfernt. Einschränkungen gab es hierbei bislang bei der Kapazität und Regeneration der Elektroden.

Das Aachener Forscherteam um Professor Matthias Wessling entwickelte nun einen vollständig kontinuierlichen elektrochemischen Entsalzungsprozess. Er basiert auf sogenannten Flow-Elektroden, die aus Suspensionen positiv und negativ geladener Kohlenstoff-Partikel bestehen.

„Die Kohlenstoff-Partikel der Elektroden binden das im Wasser vorhandene Salz extrem gut. Mit 260 Milligramm Salz pro Gramm Kohlenstoff-Partikel liegt der Wert mindestens um den Faktor 10 höher als bei zuvor beschriebenen Prozessen dieser Art“, erklärt Matthias Wessling.

Darüber hinaus beschreibt das Forschungsteam einen neuartigen kontinuierlichen Entsalzungsprozess. Im ersten Modul der verwendeten Apparatur binden die Flow-Elektroden Salz aus dem Wasser.

In einem zweiten Modul werden die Elektroden-Partikel fortwährend regeneriert. Sie gelangen anschließend wieder in das erste Modul, wo sie erneut Salz-Ionen aus dem Wasser aufnehmen. Bei einer Ausgangskonzentration vom einem Gramm Salz pro Liter Wasser konnten Matthias Wessling und Kollegen auf diese Weise in 90 Prozent des zufließenden Wassers 99 Prozent des enthaltenen Salzes entfernen.

Die restlichen zehn Prozent des Wassers dienen der Regeneration der Elektroden-Partikel. Sie nehmen die im Regenerationsprozess freigesetzten Ionen auf, sodass hier ein Salzkonzentrat entsteht.

Als eine Art ‚Hybrid-Professor’ ist Matthias Wessling einerseits Lehrstuhlinhaber an der RWTH Aachen University, andererseits gehört er der wissenschaftlichen Leitung des DWI – Leibniz-Institut für Interaktive Materialien an. „Meine Teams in der Aachener Verfahrenstechnik und im Leibniz-Institut arbeiten komplementär. Bei diesem Projekt waren die RWTH-Mitarbeiter für die Prozessentwicklung zuständig, während das Team am DWI die benötigten Materialien angefertigt hat.“

Publikation:
Y. Gendel, A. K. E. Rommerskirchen, O. David, M. Wessling, Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology, Electrochemistry Communications (2014), DOI: 10.1016/j.elecom.2014.06.004

Kontakt:
DWI – Leibniz-Institut für Interaktive Materialien
Dr. Janine Hillmer
hillmer@dwi.rwth-aachen.de
T +49 241 80 23336
M +49 178 1404852

Weitere Informationen:

http://authors.elsevier.com/a/1PP4n4xfgpiVTl

Thomas von Salzen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.rwth-aachen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verteidigung um fast jeden Preis
14.12.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

nachricht Mitochondrien von Krebszellen im Visier
14.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten