Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was Pflanzen gegen Burnout tun

02.09.2015

Ein molekularer Schalter reguliert Anpassung des Stoffwechsels an Stress und Energiemangel

Die biochemischen Vorgänge des Stoffwechsels dienen dem Aufbau und dem Erhalt von Substanz in Organismen. In diesem Prozess spielt auch der Energieverbrauch eine erhebliche Rolle. Markus Teige, Biochemiker der Universität Wien, und sein Team haben in einer aktuellen Studie die Rolle des Proteins "bZIP63" in diesem Vorgang untersucht. Die Ergebnisse sind kürzlich im Fachmagazin "eLife" erschienen.


Modell der veränderten DNA-Bindung durch bZIP63 nach Phosphorylierung (oben) und Phänotyp von bzip63 ko Mutanten.

Copyright: Markus Teige, Universität Wien

Alle Organismen müssen ihren Stoffwechsel ständig an sich ändernde Umweltbedingungen anpassen. Ein zentraler Punkt ist dabei, den Energieverbrauch mit den Erfordernissen von Wachstum und Reproduktion auf der einen Seite und mit Stressantworten auf der anderen Seite auszubalancieren. In allen höheren Organismen wird dieser Prozess durch eine Proteinkinase reguliert.

Das ist ein Enzym, welches andere Proteine mit einer Phosphatgruppe modifiziert, was oft zu Änderungen in deren Aktivität führen kann. In Tieren wird diese Kinase durch das Stoffwechselprodukt AMP aktiviert – daher AMP-abhängige Kinase - welches unter Energiemangel gebildet wird. In Pflanzen wird ein äquivalentes (orthologes) Enzym, die SnRK1, ebenfalls unter Energiemangel (z.B. kein Zucker verfügbar) aktiviert.

Pflanzen regulieren den Stoffwechsel in Abhängigkeit der verfügbaren Energie – zum Beispiel in Form von Zucker – und stellen damit sicher, dass eine ausgewogene Balance zwischen Wachstum und Stressantwort hergestellt wird. Die SnRK1-Kinase kann in Pflanzen das Gleichgewicht auf zwei prinzipielle Arten erreichen: entweder durch eine direkte Regulierung (Phosphorylierung) von Enzymaktivitäten im Stoffwechsel oder durch eine Veränderung der Genexpression.

Es wurde schon länger spekuliert, dass SnRK1 die zweite Variante durch das Anhängen einer Phosphatgruppe an ein organisches Molekül, wie etwa ein Protein, erreicht, wodurch letztlich die Umsetzung der genetischen Information reguliert wird. Bislang war aber nicht klar, welche dieser Faktoren das sind. "SnRK1 funktioniert in der Zelle als Kinase, was bedeutet, dass sie Phosphatgruppen an andere Proteine hängen kann und diese dadurch in ihrer Aktivität regulieren", erklärt Markus Teige, Biochemiker an der Universität Wien. Da diese Phosphatgruppen nicht nur relativ groß, sondern auch noch stark negativ geladen sind, kann so eine Modifizierung die Interaktion mit anderen Molekülen stark beeinflussen.

In ihrer aktuellen Studie haben WissenschafterInnen vom Department für Ökogenomik und Systembiologie der Universität Wien die Rolle von bZIP63 – ein Protein, das für die Transkription der genetischen Information von Bedeutung ist – während eines Energiemangels in der Acker-Schmalwand (Arabidopsis thaliana) untersucht. Die Experimente haben gezeigt, dass das Protein hierfür ein wichtiger Schlüsselregulator ist. Dabei wird die Aktivität durch die SnRK1-Modifikation geregelt, welche bZIP63 an drei bestimmten Stellen abändert.

Dies verstärkt die Interaktion mit anderen bZIP-Faktoren und ändert die Genexpression und damit letztendlich den Stoffwechsel. "Pflanzen, in denen das bZIP63-Protein fehlt oder nicht übertragen werden kann, zeigen eine irreguläre Reaktion auf Energiemangel", erklärt Teige. So bleiben diese etwa nach mehreren Tagen in der Dunkelheit grün – im Gegensatz zu "normalen" (also typischen Wildpflanzen), die unter diesen Bedingungen vergilben. Im Gegensatz dazu führt Energiemangel bei Pflanzen, die mehr bZIP63-Protein enthalten, zu einer schnelleren Vergilbung unter Energiemangel, die aber durch Zugabe von Zucker wieder aufgehoben werden kann. "Diese bZIP-Proteine kommen ebenso in Tieren vor und es wird eine der zukünftigen Herausforderungen sein festzustellen, ob sie dort die gleiche Rolle in der Stressanpassung spielen", so Teige abschließend.

Publikation in "eLife":
Mair A, Pedrotti L, Wurzinger B, Anrather D, Simeunovic A, Weiste C, Valerio C, Dietrich K, Kirchler T, Nägele T, Vicente Carbajosa J, Hanson J, Baena-González E, Chaban C, Weckwerth W, Dröge-Laser W, Teige M. (2015) SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants. Elife. 4. DOI: 10.7554/eLife.05828.

Wissenschaftlicher Kontakt:
Dr. Markus Teige
Department für Ökogenomik und Systembiologie
Universität Wien
1090 Wien, Althanstraße 14
T + 43-1-4277-76530
markus.teige@univie.ac.at

Rückfragehinweis
Stephan Brodicky
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 41
stephan.brodicky@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://univie.ac.at

1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum mit einem vielfältigen Jahresprogramm – unterstützt von zahlreichen Sponsoren und Kooperationspartnern. Die Universität Wien bedankt sich dafür bei ihren KooperationspartnerInnen, insbesondere bei: Österreichische Post AG, Raiffeisen NÖ-Wien, Bundesministerium für Wissenschaft, Forschung und Wirtschaft, Stadt Wien, Industriellenvereinigung, Erste Bank, Vienna Insurance Group, voestalpine, ÖBB Holding AG, Bundesimmobiliengesellschaft, Mondi. Medienpartner sind: ORF, Die Presse, Der Standard.

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten