Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was passiert in der lebenden Zelle?

04.04.2017

Mit „Molecular Activity Painting” Zellbewegungen durch einen Lichtpuls-Schalter steuern und beobachten

Die Plasmamembran ist eine Schaltstelle für Signalkaskaden, die wichtige Zellprozesse kontrollieren. Sie ist allerdings ein sehr fluides Medium, was die Erforschung solcher Vorgänge schwierig macht.


Zellbewegungen beobachten? Mit MAP kein Problem!

(c) Wiley-VCH

Deutsche Wissenschaftler haben jetzt eine molekulare „Malpinsel”-Technik entwickelt, mit der sie Signalkaskaden steuern und beobachten können.

Wie sie in der Zeitschrift Angewandte Chemie berichten, konnten sie mit ihrem modularen System aus membranverankerten, lichtaktivierbaren molekularen Bausteinen Kontraktionsmuster in lebenden Zellen gezielt auslösen und beobachten.

Die Plasmamembran umschließt als Lipidbarriere jede einzelne Zelle. Membranproteine regeln und kontrollieren den Durchlass von Wasser, Ionen, Proteinen und anderen Komponenten. Signale aus der äußeren Umgebung werden durch membranständige Rezeptoren ins Zellinnere übertragen, um zum Beispiel die Zellbewegung oder Differenzierung von Zellen zu steuern.

Solche Signalkaskaden lassen sich auf molekularer Ebene nur sehr schwer beobachten, weil die Proteine innerhalb der fluiden Lipidschicht der Plasmamembran sehr schnell wandern können. Die Teams von Leif Dehmelt am Max-Planck-Institut für molekulare Physiologie in Dortmund und Yao-Wen Wu am Chemical Genomics Centre der Max-Planck-Gesellschaft gehen daher einen neuen Weg: Sie versehen einen am Zellsubstrat verankerten künstlichen Rezeptor mit einem speziell entwickelten, modular aufgebauten Molekülsystem.

Ein Lichtpuls aktiviert die Bausteine, die nun im Zellinneren eine lokalisierte Signalkaskade bis hin zur Bewegung von Bestandteilen des Zytoskeletts auslösen - von außen sichtbar als „molekularer Pinselstrich” auf der Membran. Diese Technolgie nennen sie „Molecular Activity Painting” oder kurz: MAP.

Das Herzstück von MAP ist ein lösliches, aus vier Teilen aufgebautes Molekül. Es enthält eine Chloralkan-Kohlenwasserstoffkette, eine Polymerbrücke (PEG), eine Molekülgruppe namens Trimethroprim (TMP) und eine lichtempfindliche Gruppe namens Nvoc. Dieses Multifunktionsmolekül erfüllt mehrere Aufgaben: Durch seine Chloralkylgruppe bindet es an einen künstlichen, fest am Zellsubstrat verankerten Rezeptor.

Ein einziger Lichtpuls entfernt die Nvoc-Gruppe, und die dadurch freigesetzte TMP-Einheit rekrutiert ein zytosolisches Konstrukt, das wiederum eine Signalkaskade in der Zelle auslöst. Das ganze System hat nur einen Zweck: Steuerung und Visualisierung von molekularen Vorgängen in der lebenden Zelle.

Die Wissenschaftler konnten durch MAP die lokalisierte Kontraktion von Actomyosin in Säugerzellen steuern. Dabei „malten” sie den Buchstaben N auf die Plasmamembran. „‚Molecular Activity Painting’ ermöglicht schaltbare, strukturierte Störungen von regulatorischen Netzwerken im Mikrometer-Maßstab”,

Angewandte Chemie: Presseinfo 12/2017

Autor: Leif Dehmelt, TU Dortmund / MPI Mol. Physiol. (Germany), http://www.mpi-dortmund.mpg.de/forschungsgruppen/dehmelt

Link zum Originalbeitrag: https://doi.org/10.1002/ange.201611432

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Weitere Informationen:

http://presse.angewandte.de

Dr. Karin J. Schmitz | Gesellschaft Deutscher Chemiker e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte