Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was innere Uhr und Stress verbindet

15.09.2014

Zwei Phänomene bestimmen im Wesentlichen das Leben sämtlicher Organismen: Der beständige Rhythmus von Tag und Nacht und das Auftreten plötzlicher Ereignisse. Um darauf adäquat reagieren zu können, haben Lebewesen spezielle Mechanismen entwickelt – mit einer überraschenden Gemeinsamkeit.

Der unablässige 24-Stunden-Takt von Tag und Nacht und das unvorhersehbare Auftreten plötzlicher Ereignisse: Zwischen diesen beiden Polen spielt sich das Leben so gut wie aller Organismen auf der Erde ab – angefangen beim Einzeller bis zum Menschen.

Beide erfordern ganz unterschiedliche Antworten. Dementsprechend unterschiedliche Reaktionsmuster mit den dazugehörigen genetischen Grundlagen haben sich im Laufe der Evolution dafür entwickelt. So bereiten auf der einen Seite so genannte „innere Uhren“ den Organismus auf die regelmäßig wiederkehrenden Erfordernisse des Alltags vor. Auf der anderen Seite springt ein Stress-System immer dann an, wenn eine schnelle Reaktion auf ein unerwartetes Ereignis erforderlich ist.

Starker Stress stört den Tag-Nacht-Rhythmus

Trotz dieser Unterschiede: Jüngste Forschungsergebnisse zeigen, dass diese Systeme auch Gemeinsamkeiten besitzen, die sie miteinander verbinden. Viele Menschen können das vermutlich aus eigener Erfahrung bestätigen. Zu unterschiedlichen Tageszeiten reagieren sie ganz unterschiedlich auf Stress. Andererseits bringt starker Stress ihren Tag-Nacht-Rhythmus durcheinander und stört so den Schlaf.

Die molekularen und zellulären Grundlagen dieser Gemeinsamkeiten waren bislang im Detail unbekannt. Jetzt ist es Wissenschaftlern der Universität Würzburg gelungen, eines der verbindenden Elemente zu identifizieren. Die Chronobiologin Charlotte Helfrich-Förster und ihr Team konnten nachweisen, dass ein spezielles Enzym, die Mitogen-aktivierte Proteinkinase p38, in beiden Signalwegen eine wichtige Rolle spielt. In der Fachzeitschrift PLOS Genetics stellen die Wissenschaftler ihre Arbeit vor.

Eine Spezialistin für Chronobiologie

„Schon seit Längerem ist bekannt, dass p38 eine wichtige Komponente der Immun- und Stress-Signalwege ist. Wir konnten jetzt erstmals zeigen, dass das Enzym außerdem Bestandteil der zentralen inneren Uhr ist und dort wichtige Funktionen übernimmt“, erklärt Charlotte Helfrich-Förster das Ergebnis ihrer Studie. Die Professorin hat an der Universität Würzburg den Lehrstuhl für Neurobiologie und Genetik inne.

Chronobiologie, also die zeitliche Organisation aller Lebewesen, ist ihr Spezialgebiet. Sie ist außerdem Sprecherin des Sonderforschungsbereichs „Insect timing: mechanisms, plasticity and interactions“, der Anfang 2013 seine Arbeit aufgenommen hat. Auch er geht der Frage nach, wie die inneren Uhren im Tierreich funktionieren.

Die Würzburger Biologen haben am Beispiel der Taufliege Drosophila melanogaster die Rolle von p38 untersucht. Das Insekt bietet sich dafür an, weil viele seiner Gehirn- und Nervenfunktionen denen des Menschen sehr ähnlich sind – und das, obwohl es mit rund 80.000 Nervenzellen deutlich weniger besitzt als der Mensch, der über circa 100 Milliarden verfügt. Außerdem lässt sich Drosophila vergleichsweise einfach genetisch manipulieren – so können die Forscher zum Beispiel gezielt einzelne Proteine lahmlegen und dann untersuchen, welche Folgen das hat.

Forschung an der inneren Uhr der Taufliege

Diesen Weg haben Charlotte Helfrich-Förster und ihr Team auch für die jetzige Studie eingeschlagen. In einem ersten Schritt haben sie allerdings zunächst mit immunhistochemischen Methoden untersucht, ob das Enzym überhaupt im System der inneren Uhren der Taufliege vorliegt. Dieses setzt sich aus annähernd 150 „Uhren-Neuronen“ im Gehirn der Fliege zusammen, die sich in neun Untergruppen bündeln. Es zeigte sich, dass die beiden bekannten Varianten von p38 zwar nicht in allen, aber doch in einigen dieser Nervenzellen aktiv sind.

Im nächsten Schritt haben die Forscher diese beiden p38-Varianten in unterschiedlicher Kombination abgeschaltet oder überexprimiert – also ihre Konzentration über das normale Maß hinaus erhöht – und untersucht, welche Auswirkungen dies auf das Verhalten der Fliegen hatte. Die Ergebnisse waren teilweise wie erwartet; in manchen Fällen zeigten sich allerdings überraschende Befunde.

Was das Enzym in den Zellen der inneren Uhr bewirkt

Womit die Forscher nicht gerechnet hatten: „p38 ist in den Zellen der Taufliege besonders aktiv, wenn es dunkel ist. Im Hellen ist es inaktiv“, sagt Charlotte Helfrich-Förster. Zwar sind die für die Bildung der Enzyme verantwortlichen Gene den ganzen Tag über am Arbeiten; die Enzymaktivierung unterliegt jedoch einem zeitlichen Rhythmus. Und Licht kann den Aktivierungsprozess gänzlich stoppen.

p38 nimmt auch Einfluss auf die abendlichen Aktivitäten der Fliege und auf ihren 24-Stunden-Rhythmus. Verringerten die Wissenschaftler die p38-Aktivität in speziellen Uhren-Neuronen, verschoben die Fliegen ihr Aktiv-Sein am Abend nach hinten; ihr 24-Stunden-Rhythmus verlängerte sich deutlich auf mehr als 25 Stunden. Das gleiche Ergebnis zeigte sich, nachdem die Forscher die Konzentration von p38 erhöht hatten – ebenfalls eine Überraschung, da eigentlich das Gegenteil zu erwarten gewesen wäre. „Vermutlich gibt es einen optimalen Level dieser p38-Variante und jegliche Abweichung, egal in welcher Richtung, hat den gleichen Effekt“, erklärt Charlotte Helfrich-Förster den Befund.

Die Verbindung von Stress-System und innerer Uhr

„Diese Ergebnisse lassen den Schluss zu, dass die Mitogen-aktivierte Proteinkinase p38 eine wichtige Komponente der inneren Uhr von Drosophila ist“, fassen die Wissenschaftler die Ergebnisse ihrer Arbeit zusammen.

In Zusammenarbeit mit der Arbeitsgruppe von Thomas Raabe, Professor für Molekulare Genetik am Lehrstuhl für Medizinische Strahlenkunde und Zellforschung der Uni Würzburg, die auch im Sonderforschungsbereich „Insect Timing“ mitwirkt, konnten die Wissenschaftler sogar zeigen, dass p38 das Uhren-Protein Period reguliert und somit die Geschwindigkeit der regelmäßigen molekularen Veränderungen direkt beeinflusst. „Dies kann erklären, warum die Fliegen ihre Aktivität nach hinten verschieben und sich ihr Rhythmus auf 25 Stunden verlängert, wenn p38 manipuliert wird“, so die Forscher.

Und da Stress ebenso zur Aktivierung von p38 führt, könne er auf diese Weise auch die innere Uhr verstellen. Die MAP-Kinase p38 verbindet also das Stress-System mit der inneren Uhr.

The MAP Kinase p38 Is Part of Drosophila melanogaster's Circadian Clock. Verena Dusik, Pingkalai R. Senthilan, Benjamin Mentzel, Heiko Hartlieb, Corinna Wülbeck, Taishi Yoshii, Thomas Raabe, Charlotte Helfrich-Förster.

Weitere Informationen:

http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1004565

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit grüner Chemie gegen Malaria
21.02.2018 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Vom künstlichen Hüftgelenk bis zum Fahrradsattel
21.02.2018 | Frankfurt University of Applied Sciences

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics