Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was innere Uhr und Stress verbindet

15.09.2014

Zwei Phänomene bestimmen im Wesentlichen das Leben sämtlicher Organismen: Der beständige Rhythmus von Tag und Nacht und das Auftreten plötzlicher Ereignisse. Um darauf adäquat reagieren zu können, haben Lebewesen spezielle Mechanismen entwickelt – mit einer überraschenden Gemeinsamkeit.

Der unablässige 24-Stunden-Takt von Tag und Nacht und das unvorhersehbare Auftreten plötzlicher Ereignisse: Zwischen diesen beiden Polen spielt sich das Leben so gut wie aller Organismen auf der Erde ab – angefangen beim Einzeller bis zum Menschen.

Beide erfordern ganz unterschiedliche Antworten. Dementsprechend unterschiedliche Reaktionsmuster mit den dazugehörigen genetischen Grundlagen haben sich im Laufe der Evolution dafür entwickelt. So bereiten auf der einen Seite so genannte „innere Uhren“ den Organismus auf die regelmäßig wiederkehrenden Erfordernisse des Alltags vor. Auf der anderen Seite springt ein Stress-System immer dann an, wenn eine schnelle Reaktion auf ein unerwartetes Ereignis erforderlich ist.

Starker Stress stört den Tag-Nacht-Rhythmus

Trotz dieser Unterschiede: Jüngste Forschungsergebnisse zeigen, dass diese Systeme auch Gemeinsamkeiten besitzen, die sie miteinander verbinden. Viele Menschen können das vermutlich aus eigener Erfahrung bestätigen. Zu unterschiedlichen Tageszeiten reagieren sie ganz unterschiedlich auf Stress. Andererseits bringt starker Stress ihren Tag-Nacht-Rhythmus durcheinander und stört so den Schlaf.

Die molekularen und zellulären Grundlagen dieser Gemeinsamkeiten waren bislang im Detail unbekannt. Jetzt ist es Wissenschaftlern der Universität Würzburg gelungen, eines der verbindenden Elemente zu identifizieren. Die Chronobiologin Charlotte Helfrich-Förster und ihr Team konnten nachweisen, dass ein spezielles Enzym, die Mitogen-aktivierte Proteinkinase p38, in beiden Signalwegen eine wichtige Rolle spielt. In der Fachzeitschrift PLOS Genetics stellen die Wissenschaftler ihre Arbeit vor.

Eine Spezialistin für Chronobiologie

„Schon seit Längerem ist bekannt, dass p38 eine wichtige Komponente der Immun- und Stress-Signalwege ist. Wir konnten jetzt erstmals zeigen, dass das Enzym außerdem Bestandteil der zentralen inneren Uhr ist und dort wichtige Funktionen übernimmt“, erklärt Charlotte Helfrich-Förster das Ergebnis ihrer Studie. Die Professorin hat an der Universität Würzburg den Lehrstuhl für Neurobiologie und Genetik inne.

Chronobiologie, also die zeitliche Organisation aller Lebewesen, ist ihr Spezialgebiet. Sie ist außerdem Sprecherin des Sonderforschungsbereichs „Insect timing: mechanisms, plasticity and interactions“, der Anfang 2013 seine Arbeit aufgenommen hat. Auch er geht der Frage nach, wie die inneren Uhren im Tierreich funktionieren.

Die Würzburger Biologen haben am Beispiel der Taufliege Drosophila melanogaster die Rolle von p38 untersucht. Das Insekt bietet sich dafür an, weil viele seiner Gehirn- und Nervenfunktionen denen des Menschen sehr ähnlich sind – und das, obwohl es mit rund 80.000 Nervenzellen deutlich weniger besitzt als der Mensch, der über circa 100 Milliarden verfügt. Außerdem lässt sich Drosophila vergleichsweise einfach genetisch manipulieren – so können die Forscher zum Beispiel gezielt einzelne Proteine lahmlegen und dann untersuchen, welche Folgen das hat.

Forschung an der inneren Uhr der Taufliege

Diesen Weg haben Charlotte Helfrich-Förster und ihr Team auch für die jetzige Studie eingeschlagen. In einem ersten Schritt haben sie allerdings zunächst mit immunhistochemischen Methoden untersucht, ob das Enzym überhaupt im System der inneren Uhren der Taufliege vorliegt. Dieses setzt sich aus annähernd 150 „Uhren-Neuronen“ im Gehirn der Fliege zusammen, die sich in neun Untergruppen bündeln. Es zeigte sich, dass die beiden bekannten Varianten von p38 zwar nicht in allen, aber doch in einigen dieser Nervenzellen aktiv sind.

Im nächsten Schritt haben die Forscher diese beiden p38-Varianten in unterschiedlicher Kombination abgeschaltet oder überexprimiert – also ihre Konzentration über das normale Maß hinaus erhöht – und untersucht, welche Auswirkungen dies auf das Verhalten der Fliegen hatte. Die Ergebnisse waren teilweise wie erwartet; in manchen Fällen zeigten sich allerdings überraschende Befunde.

Was das Enzym in den Zellen der inneren Uhr bewirkt

Womit die Forscher nicht gerechnet hatten: „p38 ist in den Zellen der Taufliege besonders aktiv, wenn es dunkel ist. Im Hellen ist es inaktiv“, sagt Charlotte Helfrich-Förster. Zwar sind die für die Bildung der Enzyme verantwortlichen Gene den ganzen Tag über am Arbeiten; die Enzymaktivierung unterliegt jedoch einem zeitlichen Rhythmus. Und Licht kann den Aktivierungsprozess gänzlich stoppen.

p38 nimmt auch Einfluss auf die abendlichen Aktivitäten der Fliege und auf ihren 24-Stunden-Rhythmus. Verringerten die Wissenschaftler die p38-Aktivität in speziellen Uhren-Neuronen, verschoben die Fliegen ihr Aktiv-Sein am Abend nach hinten; ihr 24-Stunden-Rhythmus verlängerte sich deutlich auf mehr als 25 Stunden. Das gleiche Ergebnis zeigte sich, nachdem die Forscher die Konzentration von p38 erhöht hatten – ebenfalls eine Überraschung, da eigentlich das Gegenteil zu erwarten gewesen wäre. „Vermutlich gibt es einen optimalen Level dieser p38-Variante und jegliche Abweichung, egal in welcher Richtung, hat den gleichen Effekt“, erklärt Charlotte Helfrich-Förster den Befund.

Die Verbindung von Stress-System und innerer Uhr

„Diese Ergebnisse lassen den Schluss zu, dass die Mitogen-aktivierte Proteinkinase p38 eine wichtige Komponente der inneren Uhr von Drosophila ist“, fassen die Wissenschaftler die Ergebnisse ihrer Arbeit zusammen.

In Zusammenarbeit mit der Arbeitsgruppe von Thomas Raabe, Professor für Molekulare Genetik am Lehrstuhl für Medizinische Strahlenkunde und Zellforschung der Uni Würzburg, die auch im Sonderforschungsbereich „Insect Timing“ mitwirkt, konnten die Wissenschaftler sogar zeigen, dass p38 das Uhren-Protein Period reguliert und somit die Geschwindigkeit der regelmäßigen molekularen Veränderungen direkt beeinflusst. „Dies kann erklären, warum die Fliegen ihre Aktivität nach hinten verschieben und sich ihr Rhythmus auf 25 Stunden verlängert, wenn p38 manipuliert wird“, so die Forscher.

Und da Stress ebenso zur Aktivierung von p38 führt, könne er auf diese Weise auch die innere Uhr verstellen. Die MAP-Kinase p38 verbindet also das Stress-System mit der inneren Uhr.

The MAP Kinase p38 Is Part of Drosophila melanogaster's Circadian Clock. Verena Dusik, Pingkalai R. Senthilan, Benjamin Mentzel, Heiko Hartlieb, Corinna Wülbeck, Taishi Yoshii, Thomas Raabe, Charlotte Helfrich-Förster.

Weitere Informationen:

http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1004565

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung
26.07.2017 | Universität Bielefeld

nachricht Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa
26.07.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops