Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was der Stoffwechsel über den Ursprung des Lebens verrät

07.05.2018

Kieler Botanikerin schlägt neue Theorie zur gleichzeitigen Evolution gegenläufiger Stoffwechselvorgänge vor

Was war zuerst da, die Henne oder das Ei? Das klassische Ursprungsdilemma gilt insbesondere für die Entwicklungsprozesse des Lebens auf der Erde. Grundlage der Evolution war ein gradueller Übergang vom Ablauf rein chemischer Reaktionen hin zur Fähigkeit erster Lebensformen, mit Hilfe von Enzymen über Stoffwechselvorgänge Kohlenstoff umzuwandeln. Dabei haben frühe Lebewesen schon bald verschiedene Strategien der Energiegewinnung und des Stoffumsatzes entwickelt.


Die Hypothese zur synchronistischen Evolution von Autotrophie und Heterotrophie geht davon aus, dass die gegenläufigen Prozesse zeitgleich entstanden sein müssen.

Abbildung: Dr. Kirstin Gutekunst

Grundsätzlich unterscheidet die Wissenschaft nach sogenannten heterotrophen und autotrophen Organismen: Die erste Gruppe, zu der zum Beispiel alle Tiere zählen, verwendet verschiedene organische Stoffe als Energiequellen.

Ihre Stoffwechselvorgänge setzen unter anderem über die Atmung CO2 frei. Autotrophe Lebewesen hingegen nutzen als Grundlage ihres Stoffwechsels ausschließlich anorganische Kohlenstoffverbindungen. Diese Gruppe umfasst insbesondere alle Pflanzen, die Photosynthese betreiben und dabei CO2 binden, um aus Sonnenlicht Energie zu gewinnen.

In der Evolutionsforschung diskutieren Wissenschaftlerinnen und Wissenschaftler weltweit seit langem darüber, welche der beiden grundlegenden Stoffwechsel-Strategien sich zuerst entwickelte – Autotrophie oder Heterotrophie beziehungsweise Photosynthese oder Atmung.

Dr. Kirstin Gutekunst, wissenschaftliche Mitarbeiterin in der Arbeitsgruppe Physiologie und Biotechnologie der pflanzlichen Zelle am Botanischen Institut der Christian-Albrechts-Universität zu Kiel (CAU), schlägt stattdessen vor, dass beide Entwicklungen möglicherweise gleichzeitig und parallel entstanden sind. Diese neuartige Theorie, die sie als „Hypothese zur synchronistischen Evolution der Autotrophie und Heterotrophie“ bezeichnet, stellt die Kieler Botanikerin nun in der Fachzeitschrift Trends in Biochemical Sciences zur Diskussion.

Gutekunst argumentiert wie folgt: Die Erde stellt hinsichtlich des Stoffumsatzes ein geschlossenes System dar. Die Menge an jeglicher irdischer Materie ist unveränderlich, sie wird lediglich kontinuierlich umgewandelt und neu zusammengesetzt. In einem solchen System muss es folglich ein Gleichgewicht geben, da sonst bestimmte Stoffe permanent abgebaut und andere dauerhaft angehäuft würden.

Der logische Schluss daraus ist, dass zu jedem Stoffwechselvorgang eine entsprechende Umkehrung existieren muss - entweder im selben Organismus oder in zwei verschiedenen, diesbezüglich antagonistischen Lebewesen.

Ein drittes Kernargument der neuen Hypothese besteht in der Tatsache, dass die wichtigsten Akteure des Stoffwechsels, die Enzyme, von sich aus in zwei Richtungen agieren können – also, dass demnach jede metabolische Reaktion auch eine Umkehrung in der entsprechenden Gegenreaktion besitzt. Stoffwechselprozesse insgesamt laufen also nicht linear, sondern in Kreisläufen ab und sind hinsichtlich einer globalen Stoffbilanz im Gleichgewicht.

„Der aktuelle wissenschaftliche Stand deutet darauf hin, dass Heterotrophie und Autotrophie nicht getrennt voneinander entstanden sein können. In einem geschlossenen System, dass durch eine stoffliche Balance gekennzeichnet ist, bedingen sich beide Stoffwechselvorgänge gegenseitig“, betont Kirstin Gutekunst. „So wie es weder zuerst das Ei noch zuerst die Henne gegeben haben kann, können auch heterotrophe und autotrophe Organismen nicht nacheinander entstanden sein“, so die Kieler Pflanzenforscherin weiter.

Ein Beispiel für ein solches stoffliches Gleichgewicht geben die auch als Blaualgen bekannten Cyanobakterien: Sie vereinen die Stoffwechselvorgänge der Photosynthese und der Atmung in einem Organismus, zeigen also heterotrophe und autotrophe Eigenschaften zugleich. Diese Prozesse sind hier sogar besonders eng verknüpft und beruhen auf identischen molekularen Akteuren.

Die neue Theorie der Kieler Forscherin könnte somit einen Anstoß liefern, um die bestehende Auffassung vom Ursprung des Lebens auf der Erde künftig neu zu bewerten. Grundsätzlich lässt sich die Frage nach der Herkunft nur hypothetisch betrachten. Gutekunsts Theorie führt aber mit gewichtigen Indizien weg von dem Gedanken eines singulären Ursprungs, der im Kern auf einer eigentlich unwissenschaftlichen Schöpfungsidee beruht.

Die vorgeschlagene synchronistische Hypothese schlägt dagegen eine Dualität schon zu Beginn der Evolution vor: Wenn auf der Wirkung von Enzymen beruhende Stoffwechselprozesse als Charakteristikum des Lebens gelten, dann muss es zu allen Reaktionen auch eine Gegenreaktion geben. Eine solche Evolution kann demnach nur gleichzeitig begonnen und von dort aus eine parallele Entwicklung genommen haben. Gutekunsts These ist somit ein starkes Argument gegen die Annahme eines singulären Entstehens der Auto- oder Heterotrophie.

Die vorgelegte Arbeit ist als Teil der Pflanzenforschung im Rahmen des Forschungsschwerpunkts „Kiel Life Science“ an der CAU entstanden. Aktuell sind die Wissenschaftlerinnen und Wissenschaftler aus diesem Bereich bestrebt, sich stärker untereinander zu vernetzen und den gegenseitigen Austausch zu fördern. In diesem Zusammenhang bereiten sie gemeinsam mit Partnerinstitutionen in der Region die Bildung eines eigenständigen, interdisziplinären Zentrums für Pflanzenforschung an der CAU vor.

Bildmaterial steht zum Download bereit:
http://www.uni-kiel.de/download/pm/2018/2018-134-1.jpg
Bildunterschrift: Die Hypothese zur synchronistischen Evolution von Autotrophie und Heterotrophie geht davon aus, dass die gegenläufigen Prozesse zeitgleich entstanden sein müssen.
Abbildung: Dr. Kirstin Gutekunst

Originalarbeit:
Kirstin Gutekunst (2018): Hypothesis on the Synchronistic Evolution of Autotrophy and Heterotrophy Trends in Biochemical Sciences
https://dx.doi.org/10.1016/j.tibs.2018.03.008

Kontakt:
Dr. Kirstin Gutekunst
Physiologie und Biotechnologie der pflanzlichen Zelle,
Botanisches Institut und Botanischer Garten, CAU Kiel
Tel.: 0431-880-4237
E-Mail: kgutekunst@bot.uni-kiel.de

Weitere Informationen:
Physiologie und Biotechnologie der pflanzlichen Zelle,
Botanisches Institut und Botanischer Garten, CAU Kiel
http://www.biotechnologie.uni-kiel.de

Forschungsschwerpunkt „Kiel Life Science“, CAU Kiel
http://www.kls.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Text: Christian Urban
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de
Twitter: www.twitter.com/kieluni, Facebook: www.facebook.com/kieluni

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
22.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
22.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics