Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was den Golgi im Innersten zusammenhält

08.09.2015

Der Golgi-Apparat dient der Zelle als molekulare Poststelle und sendet ihre unzähligen Proteine an die jeweiligen Wirkungsorte. Um Proteine korrekt markieren und sortieren zu können, hat der Golgi einen ganz spezifischen Aufbau.

Er besteht aus flachen, Membran-umhüllten Hohlräumen (Zisternen), die dicht aufeinander gestapelt sind – ähnlich einem Stapel Pfannkuchen. Forscher am Max-Planck-Institut für Biochemie in Martinsried bei München haben jetzt neue Strukturen in diesen Zisternen entdeckt. „Mit Hilfe der Cryo-Elektronentomografie konnten wir zeigen, dass die Zisternen durch Linkerproteine zusammengehalten werden“, erklärt Benjamin Engel, Erstautor der Studie.


Wie ein Reißverschluss halten Linkerproteine (farbig dargestellt) die Zisternen des Golgi-Apparates zusammen.

Sahradha Albert / Copyright: MPI für Biochemie

Nachdem Proteine am Endoplasmatischen Retikulum gebildet wurden, gelangen sie in den Golgi-Apparat und durchwandern die verschiedenen Zisternen. Dabei erhalten sie eine Vielzahl von Modifikationen und werden für den Transport an ihren Bestimmungsort innerhalb oder außerhalb der Zelle in Vesikel verpackt.

Die spezifische Architektur des Golgi-Apparates ist essentiell, um das Modifizieren und Sortieren der Proteine zu steuern. In den verschiedenen Zisternen befinden sich unterschiedliche Golgi-Enzyme, welche die jeweils nötigen Modifikationen vornehmen. Doch wie entsteht dieser ausgeklügelte Aufbau? Max-Planck-Wissenschaftler konnten nun Licht ins Dunkel bringen, indem sie den Golgi-Apparat der Alge Chlamydomonas mit Hilfe der in situ Kryo-Elektronentomografie näher untersuchten.

Bisher konnten Forscher nur herkömmliche Methoden der Elektronenmikroskopie nutzen, um zelluläre Strukturen zu untersuchen. Die Schritte, die bei diesen Methoden zur Vorbereitung notwendig waren, schädigten die Proben und machten es Forschern unmöglich, feine molekulare Details zu beobachten. Wissenschaftler aus der Abteilung „Molekulare Strukturbiologie“ um Wolfgang Baumeister haben daher eine neue Methode entwickelt: die in situ Kryo-Elektronentomografie.

Die Zelle wird schockartig gefroren, um so ihre filigranen Strukturen zu erhalten. Dann schneiden die Forscher mit einem fokussierten Ionenstrahl winzige „Fenster“ in die Zelle und legen so ihr Innerstes frei. Mit einem Elektronenmikroskop erhalten sie anschließend einen ungetrübten Blick in das Innere der Zelle.

Experten nahmen lange an, dass die Zisternen des Golgi-Apparats nicht von Linkerproteinen zusammengehalten werden. Erst die Kryo-Elektronentomografie konnte die regelmäßigen Proteinanordnungen (siehe Abbildung) aufspüren. „Die Linkerproteine halten zwei Zisternenmembranen zusammen, ähnlich einem Reißverschluss bei einer Jacke“, erläutert Doktorand Shoh Asano, Co-Autor der Studie.

Benjamin Engel und seine Kollegen glauben, dass die Linkerproteine mehrere Funktionen haben könnten, um dem Golgi bei seiner Aufgabe als zelluläre Poststelle zu helfen. Definieren sie beispielsweise Sub-Hohlräume, welche die Enzymreaktionen zum Modifizieren der Proteine beschleunigen? Zwingen die Linkerproteine größere Proteine an den Rand des Golgis, wo sie in Vesikel verpackt werden können? Dies sind Fragen, welche die Forscher in Zukunft beantworten möchten.

Originalpublikation
B. D. Engel, M. Schaffer, S. Albert, S. Asano, J. M. Plitzko and W. Baumeister: In situ structural analysis of Golgi intracisternal protein arrays. Proceedings of the National Academy of Sciences USA, September 8, 2015
Doi: 10.1073/pnas.1515337112

Kontakt
Prof. Dr. Wolfgang Baumeister
Molekulare Strukturbiologie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: baumeist@biochem.mpg.de
http://www.biochem.mpg.de/baumeister

Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
http://www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de/news - Weitere Pressemitteilung des MPI für Biochemie
http://www.biochem.mpg.de/baumeister - Webseite der Forschungsabteilung "Molekulare Strukturbiologie" (Wolfgang Baumeister)

Anja Konschak | Max-Planck-Institut für Biochemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie