Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum manche Nervenzellen den Zellkörper „auslagern“

21.04.2015

Nervenzellen weisen ganz unterschiedliche Formen auf. Forscher am Bernstein Zentrum Berlin klären nun, warum sich bei Insekten der Zellkörper meistens am Ende eines gesonderten Fortsatzes befindet. Mithilfe von mathematischen Modellen zeigen sie, dass so die Signalstärke der elektrischen Übertragung erhöht wird – bei gleichbleibendem Energieaufwand.

Nervenzellen sind funktional aufgebaut: Über mehr oder weniger weit verzweigte Zellverästelungen (Dendriten) erhalten sie Eingangssignale, die sie entlang eines langen dünnen Zellfortsatzes (Axon) an andere Nervenzellen weiterleiten.


Nervenzellen weisen unterschiedliche Formen auf: Während der Zellkörper (rot) bei Ratten zentral liegt, befindet er sich bei Fliegen am Ende eines Fortsatzes.

Bildrechte: Janina Hesse, 2015

Der Zellkörper enthält den Zellkern mit Erbmaterial und weitere Bestandteile der Maschinerie, die das Neuron am Leben erhält. Seine Lage unterscheidet sich deutlich zwischen den einzelnen Tierklassen: Bei Säugetieren befindet sich der Zellkörper meist zwischen Dendriten und Axon, während er etwa bei Insekten häufig am Ende eines separaten Fortsatzes „ausgelagert“ wird.

„Seit der Beschreibung von Nervenzellen durch Santiago Ramón y Cajal ist viel über den Grund dieser unterschiedlichen Morphologie spekuliert worden“, erklärt Erstautorin Janina Hesse vom Bernstein Zentrum Berlin und der Humboldt-Universität zu Berlin.

„Unsere Studie bringt nun einen entscheidenden Grund ins Spiel: Die Verminderung des Signalverlustes sowie der benötigten Energie bei der Übertragung elektrischer Signale innerhalb der Nervenzelle.“

Zur Stützung ihrer Hypothese nutzten die Biologen mathematische Modelle, um die Vorteile der ausgelagerten Lage des Zellkörpers zu ermitteln. Ihre Computermodelle beinhalteten in vereinfachter Form die wesentlichen Bestandteile einer Nervenzelle.

Der Zellkörper war in den Modellen einmal zentral und einmal ausgelagert eingebunden. Die Forscher simulierten die elektrische Signalübertragung unter beiden Bedingungen und schätzten so die dafür benötigte Energie und Leitungsverluste ab.

„Zur Weiterleitung elektrischer Signale benötigen Nervenzellen eine gewisse Signalstärke im Axon. Wenn das Signal zuvor über den Zellkörper läuft, treten Verluste entlang der Zellmembran auf. Diese Leitungsverluste kann die Nervenzelle durch aktive Verstärkung reduzieren, verwendet dabei aber insbesondere bei großen Zellkörpern viel Energie. In solchen Fällen ist eine Auslagerung von Vorteil, denn diese vermindert eine Abschwächung des Signals durch den Zellkörper ohne dafür zusätzliche Energie zu benötigen“, erläutert Seniorautorin Susanne Schreiber.

Für Organismen mit großen Zellkörpern ist es daher am günstigsten, das Signal nicht über den Zellkörper laufen zu lassen, sondern geradewegs vom Dendrit zum Axon weiterzuleiten. Insekten nehmen diesen direkten Weg, indem sie den Zellkörper ihrer Nervenzellen an das Ende eines dünnen Fortsatzes verlegen. Dank der vorteilhaften Gestalt gelingt es den Zellen so, auch kleine Eingangssignale effizient an Nachbarzellen weiterzuleiten.

Mit ihrer Studie bringen die Berliner Forscherinnen Licht in ein Rätsel, über das seit den ersten detaillierten morphologischen Studien vor über 100 Jahren spekuliert worden ist. Ihre Ergebnisse sind in der aktuellen Ausgabe der Fachzeitschrift Current Biology erschienen.

Das Bernstein Zentrum Berlin ist Teil des Nationalen Bernstein Netzwerks Computational Neuroscience. Seit 2004 fördert das Bundesministerium für Bildung und Forschung (BMBF) mit dieser Initiative die neue Forschungsdisziplin Computational Neuroscience mit über 180 Mio. €. Das Netzwerk ist benannt nach dem deutschen Physiologen Julius Bernstein (1835-1917).

Weitere Informationen erteilen Ihnen gerne:
Janina Hesse
Humboldt-Universität zu Berlin
Institut für Theoretische Biologie (ITB)
Philippstr. 13, Haus 4
10115 Berlin
Tel: +49 (0)30 2093 98407
E-Mail: janina.hesse@bccn-berlin.de

Prof. Dr. Susanne Schreiber
Humboldt-Universität zu Berlin
Institut für Theoretische Biologie (ITB)
Philippstr. 13, Haus 4
10115 Berlin
Tel: +49 (0)30 2093 98405
E-Mail: s.schreiber@hu-berlin.de

Originalpublikation:
J. Hesse & S. Schreiber (2015): Externalization of neuronal somata as an evolutionary strategy for energy economization. Current Biology, 25(8), R324 - R325.
doi: 10.1016/j.cub.2015.02.024
Free access link: http://authors.elsevier.com/a/1QurA3QW8RZuOX

Siehe auch Dispatch in der gleichen Ausgabe:
J. E. Niven (2015): Neural Evolution: Marginal gains through soma location. Current Biology, 25(8), pR330–R332.
doi: 10.1016/j.cub.2015.02.059

Weitere Informationen:

http://www.neuron-science.de Webseite Arbeitsgruppe Schreiber
https://www.hu-berlin.de Humboldt-Universität zu Berlin
https://www.bccn-berlin.de Bernstein Zentrum Berlin
http://www.nncn.de Nationales Bernstein Netzwerk Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Viren ihren Lebenszyklus mit begrenzten Mitteln effektiv sicherstellen
20.02.2017 | Universität zu Lübeck

nachricht Zellstoffwechsel begünstigt Tumorwachstum
20.02.2017 | Veterinärmedizinische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Welt der keramischen Werkstoffe - 4. März 2017

20.02.2017 | Veranstaltungen

Schwerstverletzungen verstehen und heilen

20.02.2017 | Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovative Antikörper für die Tumortherapie

20.02.2017 | Medizin Gesundheit

Multikristalline Siliciumsolarzelle mit 21,9 % Wirkungsgrad – Weltrekord zurück am Fraunhofer ISE

20.02.2017 | Energie und Elektrotechnik

Wie Viren ihren Lebenszyklus mit begrenzten Mitteln effektiv sicherstellen

20.02.2017 | Biowissenschaften Chemie