Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum Krebszellen trotz Sauerstoffmangel wachsen

25.11.2014

Gesunde Zellen verlangsamen bei Sauerstoffmangel (Hypoxie) ihr Wachstum. Umso erstaunlicher ist es, dass Hypoxie ein charakteristisches Merkmal bösartiger Tumore ist. Wie es Krebszellen gelingt, das genetische Programm der Wachstumsbremse zu umgehen, berichten Forscher der Goethe-Universität und der Justus-Liebig-Universität Gießen in zwei Publikationen in der aktuellen Ausgabe der Fachzeitschrift „Nature Communications“.

Gesunde Zellen verlangsamen bei Sauerstoffmangel (Hypoxie) ihr Wachstum. Umso erstaunlicher ist es, dass Hypoxie ein charakteristisches Merkmal bösartiger Tumore ist. Wie es Krebszellen gelingt, das genetische Programm der Wachstumsbremse zu umgehen, berichten Forscher der Goethe-Universität und der Justus-Liebig-Universität Gießen in zwei Publikationen in der aktuellen Ausgabe der Fachzeitschrift „Nature Communications“.


Unter Sauerstoffmangel fördert PHD3 die Aufnahme des epidermalen Wachstumsfaktorrezeptors, das Wachstum erlahmt. In Tumorzellen ist der Prozess gestört, die Zelle wächst trotz Sauerstoffmangels.

Garvalov et al., Nature Communications

Seit längerem ist bekannt, dass PHD-Proteine (Prolyl-Hydroxylase-Domänen-Proteine) eine Schlüsselrolle bei der Regulatoren der Hypoxie spielen. Sie kontrollieren die Stabilität der Hypoxie-induzierten Transkriptionsfaktoren (HIFs), welche die Anpassung der Zelle an Sauerstoffmangel steuern.

Nun hat das Team von Prof. Amparo Acker-Palmer, Goethe-Universität, und Prof. Till Acker, Justus-Liebig-Universität Gießen, herausgefunden, dass ein spezielles PHD-Protein, PHD3, auch den epidermalen Wachstumsfaktorrezeptor (EGFR) kontrolliert.

In gesunden Zellen antwortet PHD3 auf Stress wie Sauerstoffmangel, indem es die Aufnahme des EGF-Rezeptors ins Zellinnere steuert. Durch diese Internalisierung werden die Wachstumssignale herab reguliert.

„Wir haben herausgefunden, dass PHD3 als Gerüstprotein dient, an dem zentrale Adapterproteine wie Eps15 und Epsin1 binden, um die Aufnahme von EGFR in die Zelle zu fördern“, so Acker-Palmer. In Tumorzellen ist dieser Prozess aufgrund des Verlusts von PHD3 gestört. Infolgedessen wird die Internalisierung von EGFR unterdrückt, was zu einer übermäßigen Aktivität der EGFR-Signale und damit dem unkontrollierten Wachstum der Zelle führt.

Die Forschergruppe konnte zeigen, dass der Verlust von PHD3 ein entscheidender Schritt beim Wachstum humaner maligner Hirntumore (Glioblastome) ist. Die Tumorzellen werden dadurch unabhängig von den wachstumshemmenden Signalen unter Sauerstoffmangel. „Klinisch ist diese Entdeckung hochrelevant, weil sie einen alternativen Mechanismus der Hyperaktivierung des EGF-Rezeptors zeigt, der unabhängig von seiner genetischen Amplifikation ist. Therapeutisch kann er durch EGFR-Inhibitoren unterdrückt werden“, erklärt Till Acker, Neuropathologe an der Universität Gießen.

“Unsere Arbeit zeigt eine unerwartete und neue Funktion des PHD3 an der Schnittstelle von zwei brandaktuellen Forschungsgebieten: Sauerstoffmessung und EGFR-Signaling”, erklärt Acker-Palmer. „Dies beweist erneut, wie groß die Bedeutung der Rezeptor-Internalisierung in der Krebsentwicklung ist“. Diesen Zusammenhang hatte das Forscherteam bereits 2010 für die Tumor-Angiogenese gezeigt (Sawamiphak et al, Nature 2010).

Publikationen:
Henze et al: Loss of PHD3 allows tumours to overcome hypoxic growth inhibition and sustain proliferation through EGFR, Nature communications, 25.11.2014, DOI: 10.1038/ncomms6582

Garvalov et al.: PHD3 regulates EGFR internalization and signalling in tumours, Nature communications, 25.11.2014, DOI: 10.1038/ncomms6577

Informationen: Prof. Amparo Acker-Palmer, Institut für Zellbiologie und Neurowissenschaft und Buchmann Institut für Molekulare Lebenswissenschaften, Campus Riedberg, Tel.: (069) 798- 42563, Acker-Palmer@bio.uni-frankfurt.de; Prof. Till Acker, Institut für Neuropathologie, Universitätsklinikum Gießen und Marburg GmbH, Arndtstraße 16, 35392 Gießen, Tel.: (0641) 99-41181, till.acker@patho.med.uni-giessen.de

Die Goethe-Universität Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 2014 feiert sie ihren 100. Geburtstag. 1914 gegründet mit rein privaten Mitteln von freiheitlich orientierten Frankfurter Bürgerinnen und Bürgern fühlt sie sich als Bürgeruniversität bis heute dem Motto „Wissenschaft für die Gesellschaft“ in Forschung und Lehre verpflichtet. Viele der Frauen und Männer der ersten Stunde waren jüdische Stifter. In den letzten 100 Jahren hat die Goethe-Universität Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Chemie, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Heute ist sie eine der zehn drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geisteswissenschaften.

Mehr Informationen unter www2.uni-frankfurt.de/gu100

Die 1607 gegründete Justus-Liebig-Universität Gießen (JLU) ist eine traditionsreiche Forschungsuniversität, die rund 28.000 Studierende anzieht. Neben einem breiten Lehrangebot – von den klassischen Naturwissenschaften über Rechts- und Wirtschaftswissenschaften, Gesellschafts- und Erziehungswissenschaften bis hin zu Sprach- und Kulturwissenschaften – bietet sie ein lebenswissenschaftliches Fächerspektrum, das nicht nur in Hessen einmalig ist: Human- und Veterinärmedizin, Agrar-, Umwelt- und Ernährungswissenschaften sowie Lebensmittelchemie. Unter den großen Persönlichkeiten, die an der JLU geforscht und gelehrt haben, befindet sich eine Reihe von Nobelpreisträgern, unter anderem Wilhelm Conrad Röntgen (Nobelpreis für Physik 1901) und Wangari Maathai (Friedensnobelpreis 2004). Seit 2006 wird die JLU sowohl in der ersten als auch in der zweiten Förderlinie der Exzellenzinitiative gefördert (Excellence Cluster Cardio-Pulmonary System – ECCPS; International Graduate Centre for the Study of Culture – GCSC). www.uni-giessen.de

Herausgeber: Der Präsident der Goethe-Universität Frankfurt am Main. Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation, Abteilung Marketing und Kommunikation, Grüneburgplatz1, 60323 Frankfurt am Main, Tel: (069) 798-12498, Fax: (069) 798-761 12531, hardy@pvw.uni-frankfurt.

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten