Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum Krebszellen trotz Sauerstoffmangel wachsen

25.11.2014

Gesunde Zellen verlangsamen bei Sauerstoffmangel (Hypoxie) ihr Wachstum. Umso erstaunlicher ist es, dass Hypoxie ein charakteristisches Merkmal bösartiger Tumore ist. Wie es Krebszellen gelingt, das genetische Programm der Wachstumsbremse zu umgehen, berichten Forscher der Goethe-Universität und der Justus-Liebig-Universität Gießen in zwei Publikationen in der aktuellen Ausgabe der Fachzeitschrift „Nature Communications“.

Gesunde Zellen verlangsamen bei Sauerstoffmangel (Hypoxie) ihr Wachstum. Umso erstaunlicher ist es, dass Hypoxie ein charakteristisches Merkmal bösartiger Tumore ist. Wie es Krebszellen gelingt, das genetische Programm der Wachstumsbremse zu umgehen, berichten Forscher der Goethe-Universität und der Justus-Liebig-Universität Gießen in zwei Publikationen in der aktuellen Ausgabe der Fachzeitschrift „Nature Communications“.


Unter Sauerstoffmangel fördert PHD3 die Aufnahme des epidermalen Wachstumsfaktorrezeptors, das Wachstum erlahmt. In Tumorzellen ist der Prozess gestört, die Zelle wächst trotz Sauerstoffmangels.

Garvalov et al., Nature Communications

Seit längerem ist bekannt, dass PHD-Proteine (Prolyl-Hydroxylase-Domänen-Proteine) eine Schlüsselrolle bei der Regulatoren der Hypoxie spielen. Sie kontrollieren die Stabilität der Hypoxie-induzierten Transkriptionsfaktoren (HIFs), welche die Anpassung der Zelle an Sauerstoffmangel steuern.

Nun hat das Team von Prof. Amparo Acker-Palmer, Goethe-Universität, und Prof. Till Acker, Justus-Liebig-Universität Gießen, herausgefunden, dass ein spezielles PHD-Protein, PHD3, auch den epidermalen Wachstumsfaktorrezeptor (EGFR) kontrolliert.

In gesunden Zellen antwortet PHD3 auf Stress wie Sauerstoffmangel, indem es die Aufnahme des EGF-Rezeptors ins Zellinnere steuert. Durch diese Internalisierung werden die Wachstumssignale herab reguliert.

„Wir haben herausgefunden, dass PHD3 als Gerüstprotein dient, an dem zentrale Adapterproteine wie Eps15 und Epsin1 binden, um die Aufnahme von EGFR in die Zelle zu fördern“, so Acker-Palmer. In Tumorzellen ist dieser Prozess aufgrund des Verlusts von PHD3 gestört. Infolgedessen wird die Internalisierung von EGFR unterdrückt, was zu einer übermäßigen Aktivität der EGFR-Signale und damit dem unkontrollierten Wachstum der Zelle führt.

Die Forschergruppe konnte zeigen, dass der Verlust von PHD3 ein entscheidender Schritt beim Wachstum humaner maligner Hirntumore (Glioblastome) ist. Die Tumorzellen werden dadurch unabhängig von den wachstumshemmenden Signalen unter Sauerstoffmangel. „Klinisch ist diese Entdeckung hochrelevant, weil sie einen alternativen Mechanismus der Hyperaktivierung des EGF-Rezeptors zeigt, der unabhängig von seiner genetischen Amplifikation ist. Therapeutisch kann er durch EGFR-Inhibitoren unterdrückt werden“, erklärt Till Acker, Neuropathologe an der Universität Gießen.

“Unsere Arbeit zeigt eine unerwartete und neue Funktion des PHD3 an der Schnittstelle von zwei brandaktuellen Forschungsgebieten: Sauerstoffmessung und EGFR-Signaling”, erklärt Acker-Palmer. „Dies beweist erneut, wie groß die Bedeutung der Rezeptor-Internalisierung in der Krebsentwicklung ist“. Diesen Zusammenhang hatte das Forscherteam bereits 2010 für die Tumor-Angiogenese gezeigt (Sawamiphak et al, Nature 2010).

Publikationen:
Henze et al: Loss of PHD3 allows tumours to overcome hypoxic growth inhibition and sustain proliferation through EGFR, Nature communications, 25.11.2014, DOI: 10.1038/ncomms6582

Garvalov et al.: PHD3 regulates EGFR internalization and signalling in tumours, Nature communications, 25.11.2014, DOI: 10.1038/ncomms6577

Informationen: Prof. Amparo Acker-Palmer, Institut für Zellbiologie und Neurowissenschaft und Buchmann Institut für Molekulare Lebenswissenschaften, Campus Riedberg, Tel.: (069) 798- 42563, Acker-Palmer@bio.uni-frankfurt.de; Prof. Till Acker, Institut für Neuropathologie, Universitätsklinikum Gießen und Marburg GmbH, Arndtstraße 16, 35392 Gießen, Tel.: (0641) 99-41181, till.acker@patho.med.uni-giessen.de

Die Goethe-Universität Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 2014 feiert sie ihren 100. Geburtstag. 1914 gegründet mit rein privaten Mitteln von freiheitlich orientierten Frankfurter Bürgerinnen und Bürgern fühlt sie sich als Bürgeruniversität bis heute dem Motto „Wissenschaft für die Gesellschaft“ in Forschung und Lehre verpflichtet. Viele der Frauen und Männer der ersten Stunde waren jüdische Stifter. In den letzten 100 Jahren hat die Goethe-Universität Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Chemie, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Heute ist sie eine der zehn drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geisteswissenschaften.

Mehr Informationen unter www2.uni-frankfurt.de/gu100

Die 1607 gegründete Justus-Liebig-Universität Gießen (JLU) ist eine traditionsreiche Forschungsuniversität, die rund 28.000 Studierende anzieht. Neben einem breiten Lehrangebot – von den klassischen Naturwissenschaften über Rechts- und Wirtschaftswissenschaften, Gesellschafts- und Erziehungswissenschaften bis hin zu Sprach- und Kulturwissenschaften – bietet sie ein lebenswissenschaftliches Fächerspektrum, das nicht nur in Hessen einmalig ist: Human- und Veterinärmedizin, Agrar-, Umwelt- und Ernährungswissenschaften sowie Lebensmittelchemie. Unter den großen Persönlichkeiten, die an der JLU geforscht und gelehrt haben, befindet sich eine Reihe von Nobelpreisträgern, unter anderem Wilhelm Conrad Röntgen (Nobelpreis für Physik 1901) und Wangari Maathai (Friedensnobelpreis 2004). Seit 2006 wird die JLU sowohl in der ersten als auch in der zweiten Förderlinie der Exzellenzinitiative gefördert (Excellence Cluster Cardio-Pulmonary System – ECCPS; International Graduate Centre for the Study of Culture – GCSC). www.uni-giessen.de

Herausgeber: Der Präsident der Goethe-Universität Frankfurt am Main. Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation, Abteilung Marketing und Kommunikation, Grüneburgplatz1, 60323 Frankfurt am Main, Tel: (069) 798-12498, Fax: (069) 798-761 12531, hardy@pvw.uni-frankfurt.

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie