Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum Fische beim Schwimmen nicht abdriften

07.04.2014

Mit unseren Augen können wir nicht nur Objekte erkennen. Sie informieren uns auch kontinuierlich über unsere eigenen Bewegungen.

Ob wir laufen, uns drehen, fallen oder in einem Fahrzeug sitzen – die Welt gleitet an uns vorbei und hinterlässt eine charakteristische Bewegungsspur auf der Netzhaut. Aus diesem "optischen Fluss" berechnet das Gehirn scheinbar mühelos die eigenen Bewegungen, um sie gegebenenfalls zu kompensieren.


Neu entdeckte Nervenzell-Typen (gelb) helfen Zebrafischen ihre Augen- und Schwimmbewegungen zu koordinieren. In Blau das Gehirn einer Fischlarve, mit angedeuteter Lage der Augen.

© Max-Planck-Institut für Neurobiologie / Kubo

Wissenschaftler am Max-Planck-Institut für Neurobiologie in Martinsried bei München beschreiben nun mit Biologen der Universität Freiburg eine ganze Reihe neuer Nervenzelltypen, mit deren Hilfe das Gehirn von Zebrafischen Eigenbewegungen wahrnehmen und ausgleichen kann.

Wenn wir durch den Wald joggen, bewegt sich das Bild der Bäume scheinbar rückwärts über unsere Netzhaut. Dies geschieht für beide Augen in die gleiche Richtung. Drehen wir uns dagegen um die eigene Achse, dann rotieren die Bäume scheinbar um uns herum. Für das eine Auge erfolgt diese Rotation von außen nach innen, für das andere Auge von innen nach außen.

Unser Gehirn verarbeitet solche großflächigen Bewegungen der visuellen Umwelt, den "optischen Fluss", sodass wir zum Beispiel beim Joggen unsere Geschwindigkeit richtig einschätzen und nicht andauernd stolpern.

Natürlich kann nicht nur das menschliche Gehirn den optischen Fluss wahrnehmen. Fische, die in fließendem Gewässer zuhause sind, nutzen die Fähigkeit zum Beispiel, um ihr Abdriften in der Strömung zu verhindern. Basierend auf dem optischen Fluss korrigiert der Fisch seine passive Verschiebung durch eigenes Schwimmen. Wie und wo das Fischgehirn diese Berechnungen durchführt, das war bislang unbekannt.

Ein transparentes Gehirn im Einsatz

„Wir wollten wissen, wo und von welchen Nervenzellen die Ausgleichsbewegungen ausgelöst werden”, erklärt Herwig Baier. Zusammen mit seiner Abteilung am Max-Planck-Institut für Neurobiologie sucht und beschreibt er im Gehirn von Zebrafisch-Larven die Nervennetzwerke, die bestimmte Verhaltensweisen steuern. Keine leichte Aufgabe, denn das Gehirn der rund 5 Millimeter großen Fischlarven ist zwar winzig, besteht aber aus mehreren hunderttausend Nervenzellen. Ein Vorteil ist jedoch, dass das Gehirn der Fischlarven beinahe durchsichtig ist. So können Nervenzellen ohne Eingriff direkt unter dem Mikroskop beobachtet werden.

Für ihre Untersuchungen setzten die Wissenschaftler die Fischlaven in runde, weiße Container, auf deren Wänden sich schwarze Streifenmuster bewegten. Je nach Bewegungsmuster reagieren die Tiere unterschiedlich: Bewegen sich die Streifen für beiden Augen nach vorne oder hinten, dann schwimmt der Fisch nach vorne oder versucht umzudrehen. Werden die Streifen jedoch entweder im oder gegen den Uhrzeigersinn um den Fisch herumbewegt, dann drehen sich die beiden Augen mit der wahrgenommenen Rotationsrichtung. Die Ausgleichsbewegungen des ganzen Körpers (optomotorisches Verhalten) oder nur der Augen (optokinetisches Verhalten) sollen das Bewegungssignal auf der Netzhaut so klein wie möglich machen – der Fisch hält seine Position.

Leuchtende Nervenzellen im "IMAX-Kino"

Die Neurobiologen wollten nun die Nervenzellen im Gehirn eines aktiven Fisches finden, die Eigenbewegung verarbeiten und diese optomotorischen und optokinetischen Ausgleichsbewegungen auslösen. „Das war wie die sprichwörtliche Stecknadel im Heuhaufen zu finden”, erzählt Fumi Kubo, die Erstautorin der Studie. „So etwas war noch vor wenigen Jahren völlig undenkbar.” Für ihre Studie zog Fumi Kubo in Kollaboration mit Aristides Arrenberg vom Institut für Biologie I der Universität Freiburg und Wissenschaftlern vom Freiburger Exzellenzcluster BIOSS Centre for Biological Signalling Studies daher eine ganz neue wissenschaftliche Methode heran: die Abbildung des gesamten Gehirns. Dank neuester Fluoreszenzfarbstoffe und genetischer Finessen ist es seit Kurzem möglich, die Umrisse aller Nervenzellen in einem Fischgehirn sichtbar zu machen. Das Besondere ist jedoch, dass die Farbstoffe ihre Farbe ändern, wenn eine Nervenzelle aktiv wird.

Während des Versuchs wurde der Kopf der Fische mit dem gefärbten Nervensystem in ein Gel eingebettet. Die bewegten Streifenmuster auf den Wänden des Containers gaukelten den Tieren, ähnlich wie in einem IMAX-Kino, eine Eigenbewegung vor. Je nachdem, ob sich die Tiere scheinbar geradeaus oder um eine bestimmte Achse drehten, verfolgten sie die Muster mit den Augen oder schlugen mit dem Schwanz. Durch ein Zwei-Photonen-Mikroskop konnten die Wissenschaftler währenddessen beobachteten, welche Nervenzellen auf die Bewegungsrichtung des jeweils gesehenen Musters reagierten.

Nervenzellschaltplan im Fischgehirn

Bisher waren vier richtungsselektive Zelltypen in der Netzhaut bekannt. Wissenschaftler gingen bisher davon aus, dass diese Zelltypen und die nachgeschalteten Nervenzellen im visuellen Gehirn die Augenbewegungen verarbeiten und die Befehle zum Halten der Position des Fisches weitergeben. Jetzt konnten die Neurobiologen in der Tat solche, vergleichsweise einfachen Nervenverbindungen nachweisen. Zusätzlich fanden sie jedoch sieben weitere, bislang unbekannte Zelltypen mit komplexeren Antworten auf die Eingänge beider Augen. Ein Zelltyp wurde zum Beispiel aktiv, wenn beide Augen eine Geradeausbewegung wahrnahmen, aber nicht eine Drehung rechtsherum. Ein interessantes Ergebnis, denn in beiden Fällen sollte das linke Auge eine Bewegung von außen nach innen sehen. „Wir haben somit nicht nur neue Zelltypen gefunden, sondern auch eine mögliche Erklärung dafür, wie das Gehirn der Fische zwischen geraden und gedrehten Bewegungen unterscheidet”, freut sich Fumi Kubo.

Während die Fische wieder frei in ihren Becken schwammen, erstellten die Wissenschaftler aus den erfassten Aufgaben der neuen Nervenzelltypen und ihrer Lage im Gehirn einen Verbindungsschaltplan der Zellen. Die Ergebnisse tragen dazu bei, die Verarbeitung von Bewegungen im Wirbeltiergehirn besser zu verstehen. Fumi Kubo denkt jedoch bereits an den nächsten Schritt: „Die nächste Herausforderung wird nun sein, die angenommenen Verbindungen im Gehirn nachzuweisen.”

Originalveröffentlichung:

Fumi Kubo, Bastian Hablitzel, Marco Dal Maschio, Wolfgang Driever, Herwig Baier, and
Aristides B Arrenberg
Functional architecture of an optic flow responsive area that drives horizontal eye movements in zebrafish
Neuron, 19. März 2014

Kontakt:

Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-Mail: merker@neuro.mpg.de
www.neuro.mpg.de

Prof. Dr. Herwig Baier
Abteilung Gene – Schaltkreise – Verhalten
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 3200
Email: hbaier@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de - Webseite des Max-Planck-Instituts für Neurobiologie
http://www.neuro.mpg.de/baier/de - Webseite der Abteilung von Herwig Baier

Dr. Stefanie Merker | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
22.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
22.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Raumschrott im Fokus

Das Astronomische Institut der Universität Bern (AIUB) hat sein Observatorium in Zimmerwald um zwei zusätzliche Kuppelbauten erweitert sowie eine Kuppel erneuert. Damit stehen nun sechs vollautomatisierte Teleskope zur Himmelsüberwachung zur Verfügung – insbesondere zur Detektion und Katalogisierung von Raumschrott. Unter dem Namen «Swiss Optical Ground Station and Geodynamics Observatory» erhält die Forschungsstation damit eine noch grössere internationale Bedeutung.

Am Nachmittag des 10. Februars 2009 stiess über Sibirien in einer Höhe von rund 800 Kilometern der aktive Telefoniesatellit Iridium 33 mit dem ausgedienten...

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Raumschrott im Fokus

22.05.2018 | Physik Astronomie

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics