Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum Fische beim Schwimmen nicht abdriften

07.04.2014

Mit unseren Augen können wir nicht nur Objekte erkennen. Sie informieren uns auch kontinuierlich über unsere eigenen Bewegungen.

Ob wir laufen, uns drehen, fallen oder in einem Fahrzeug sitzen – die Welt gleitet an uns vorbei und hinterlässt eine charakteristische Bewegungsspur auf der Netzhaut. Aus diesem "optischen Fluss" berechnet das Gehirn scheinbar mühelos die eigenen Bewegungen, um sie gegebenenfalls zu kompensieren.


Neu entdeckte Nervenzell-Typen (gelb) helfen Zebrafischen ihre Augen- und Schwimmbewegungen zu koordinieren. In Blau das Gehirn einer Fischlarve, mit angedeuteter Lage der Augen.

© Max-Planck-Institut für Neurobiologie / Kubo

Wissenschaftler am Max-Planck-Institut für Neurobiologie in Martinsried bei München beschreiben nun mit Biologen der Universität Freiburg eine ganze Reihe neuer Nervenzelltypen, mit deren Hilfe das Gehirn von Zebrafischen Eigenbewegungen wahrnehmen und ausgleichen kann.

Wenn wir durch den Wald joggen, bewegt sich das Bild der Bäume scheinbar rückwärts über unsere Netzhaut. Dies geschieht für beide Augen in die gleiche Richtung. Drehen wir uns dagegen um die eigene Achse, dann rotieren die Bäume scheinbar um uns herum. Für das eine Auge erfolgt diese Rotation von außen nach innen, für das andere Auge von innen nach außen.

Unser Gehirn verarbeitet solche großflächigen Bewegungen der visuellen Umwelt, den "optischen Fluss", sodass wir zum Beispiel beim Joggen unsere Geschwindigkeit richtig einschätzen und nicht andauernd stolpern.

Natürlich kann nicht nur das menschliche Gehirn den optischen Fluss wahrnehmen. Fische, die in fließendem Gewässer zuhause sind, nutzen die Fähigkeit zum Beispiel, um ihr Abdriften in der Strömung zu verhindern. Basierend auf dem optischen Fluss korrigiert der Fisch seine passive Verschiebung durch eigenes Schwimmen. Wie und wo das Fischgehirn diese Berechnungen durchführt, das war bislang unbekannt.

Ein transparentes Gehirn im Einsatz

„Wir wollten wissen, wo und von welchen Nervenzellen die Ausgleichsbewegungen ausgelöst werden”, erklärt Herwig Baier. Zusammen mit seiner Abteilung am Max-Planck-Institut für Neurobiologie sucht und beschreibt er im Gehirn von Zebrafisch-Larven die Nervennetzwerke, die bestimmte Verhaltensweisen steuern. Keine leichte Aufgabe, denn das Gehirn der rund 5 Millimeter großen Fischlarven ist zwar winzig, besteht aber aus mehreren hunderttausend Nervenzellen. Ein Vorteil ist jedoch, dass das Gehirn der Fischlarven beinahe durchsichtig ist. So können Nervenzellen ohne Eingriff direkt unter dem Mikroskop beobachtet werden.

Für ihre Untersuchungen setzten die Wissenschaftler die Fischlaven in runde, weiße Container, auf deren Wänden sich schwarze Streifenmuster bewegten. Je nach Bewegungsmuster reagieren die Tiere unterschiedlich: Bewegen sich die Streifen für beiden Augen nach vorne oder hinten, dann schwimmt der Fisch nach vorne oder versucht umzudrehen. Werden die Streifen jedoch entweder im oder gegen den Uhrzeigersinn um den Fisch herumbewegt, dann drehen sich die beiden Augen mit der wahrgenommenen Rotationsrichtung. Die Ausgleichsbewegungen des ganzen Körpers (optomotorisches Verhalten) oder nur der Augen (optokinetisches Verhalten) sollen das Bewegungssignal auf der Netzhaut so klein wie möglich machen – der Fisch hält seine Position.

Leuchtende Nervenzellen im "IMAX-Kino"

Die Neurobiologen wollten nun die Nervenzellen im Gehirn eines aktiven Fisches finden, die Eigenbewegung verarbeiten und diese optomotorischen und optokinetischen Ausgleichsbewegungen auslösen. „Das war wie die sprichwörtliche Stecknadel im Heuhaufen zu finden”, erzählt Fumi Kubo, die Erstautorin der Studie. „So etwas war noch vor wenigen Jahren völlig undenkbar.” Für ihre Studie zog Fumi Kubo in Kollaboration mit Aristides Arrenberg vom Institut für Biologie I der Universität Freiburg und Wissenschaftlern vom Freiburger Exzellenzcluster BIOSS Centre for Biological Signalling Studies daher eine ganz neue wissenschaftliche Methode heran: die Abbildung des gesamten Gehirns. Dank neuester Fluoreszenzfarbstoffe und genetischer Finessen ist es seit Kurzem möglich, die Umrisse aller Nervenzellen in einem Fischgehirn sichtbar zu machen. Das Besondere ist jedoch, dass die Farbstoffe ihre Farbe ändern, wenn eine Nervenzelle aktiv wird.

Während des Versuchs wurde der Kopf der Fische mit dem gefärbten Nervensystem in ein Gel eingebettet. Die bewegten Streifenmuster auf den Wänden des Containers gaukelten den Tieren, ähnlich wie in einem IMAX-Kino, eine Eigenbewegung vor. Je nachdem, ob sich die Tiere scheinbar geradeaus oder um eine bestimmte Achse drehten, verfolgten sie die Muster mit den Augen oder schlugen mit dem Schwanz. Durch ein Zwei-Photonen-Mikroskop konnten die Wissenschaftler währenddessen beobachteten, welche Nervenzellen auf die Bewegungsrichtung des jeweils gesehenen Musters reagierten.

Nervenzellschaltplan im Fischgehirn

Bisher waren vier richtungsselektive Zelltypen in der Netzhaut bekannt. Wissenschaftler gingen bisher davon aus, dass diese Zelltypen und die nachgeschalteten Nervenzellen im visuellen Gehirn die Augenbewegungen verarbeiten und die Befehle zum Halten der Position des Fisches weitergeben. Jetzt konnten die Neurobiologen in der Tat solche, vergleichsweise einfachen Nervenverbindungen nachweisen. Zusätzlich fanden sie jedoch sieben weitere, bislang unbekannte Zelltypen mit komplexeren Antworten auf die Eingänge beider Augen. Ein Zelltyp wurde zum Beispiel aktiv, wenn beide Augen eine Geradeausbewegung wahrnahmen, aber nicht eine Drehung rechtsherum. Ein interessantes Ergebnis, denn in beiden Fällen sollte das linke Auge eine Bewegung von außen nach innen sehen. „Wir haben somit nicht nur neue Zelltypen gefunden, sondern auch eine mögliche Erklärung dafür, wie das Gehirn der Fische zwischen geraden und gedrehten Bewegungen unterscheidet”, freut sich Fumi Kubo.

Während die Fische wieder frei in ihren Becken schwammen, erstellten die Wissenschaftler aus den erfassten Aufgaben der neuen Nervenzelltypen und ihrer Lage im Gehirn einen Verbindungsschaltplan der Zellen. Die Ergebnisse tragen dazu bei, die Verarbeitung von Bewegungen im Wirbeltiergehirn besser zu verstehen. Fumi Kubo denkt jedoch bereits an den nächsten Schritt: „Die nächste Herausforderung wird nun sein, die angenommenen Verbindungen im Gehirn nachzuweisen.”

Originalveröffentlichung:

Fumi Kubo, Bastian Hablitzel, Marco Dal Maschio, Wolfgang Driever, Herwig Baier, and
Aristides B Arrenberg
Functional architecture of an optic flow responsive area that drives horizontal eye movements in zebrafish
Neuron, 19. März 2014

Kontakt:

Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-Mail: merker@neuro.mpg.de
www.neuro.mpg.de

Prof. Dr. Herwig Baier
Abteilung Gene – Schaltkreise – Verhalten
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 3200
Email: hbaier@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de - Webseite des Max-Planck-Instituts für Neurobiologie
http://www.neuro.mpg.de/baier/de - Webseite der Abteilung von Herwig Baier

Dr. Stefanie Merker | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

nachricht Erfolgreich Infektionen erforscht - DFG-Forschergruppe verlängert
24.01.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EU-Projekt: Bilder leistungsstark und energieeffizient verarbeiten

24.01.2017 | Förderungen Preise

„Allen Unkenrufen zum Trotz“ Neues Projekt sorgt für Schutz der Gelbbauchunken in Bayern

24.01.2017 | Förderungen Preise

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungsnachrichten