Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum der Brennstoffzelle die Luft wegbleibt

28.03.2017

Eine Brennstoffzelle braucht ein Oxidationsmittel – etwa Sauerstoff. An der TU Wien kann man nun erklären, warum er manchmal nur noch schlecht eindringt und die Zellen unbrauchbar werden.

Eine Brennstoffzelle erzeugt elektrischen Strom aus einer einfachen chemischen Reaktion – zum Beispiel der Verbindung von Sauerstoff und Wasserstoff zu Wasser. Knifflig ist allerdings die Frage, woraus man keramische Brennstoffzellen am besten herstellt. Neue Materialien werden benötigt, die möglichst effizient als Katalysator für die gewünschte chemische Reaktion dienen, aber auch möglichst lange halten ohne sich zu verändern.


An manchen Stellen der Oberfläche kann Sauerstoff viel leichter eindringen als an anderen.

TU Wien


Mit gepulsten Lasern wird die passende Oberfläche erzeugt.

TU Wien

Bisher war man beim Entwickeln solcher Materialien oft auf Versuch und Irrtum angewiesen. An der TU Wien gelang es nun, die Oberfläche von Brennstoffzellen auf atomarer Skala gezielt zu verändern und gleichzeitig zu vermessen. So lassen sich nun wichtige Phänomene erstmals erklären – etwa, warum Strontium-Atome Spielverderber sind, oder dass Kobalt für Brennstoffzellen nützlich sein kann.

Sauerstoff-Nachschub als Flaschenhals

An der Kathode, dem positiven Pol der Brennstoffzelle, wird Sauerstoff aus der Luft in das Brennstoffzellen-Material eingebaut. Elektrisch geladene Sauerstoff-Ionen müssen dann durch das Material hindurchwandern und auf der negativ geladenen Seite, der Anode mit dem Brennstoff reagieren – zum Beispiel mit Wasserstoff.

„Der Flaschenhals dieses Gesamtprozesses ist der Sauerstoffeinbau an der Kathode“, erklärt Ghislain Rupp aus der Forschungsgruppe von Prof. Jürgen Fleig vom Institut für Chemische Technologien und Analytik der TU Wien. Zum selben Institut gehört das Team von Prof. Andreas Limbeck, das ebenfalls am Forschungsprojekt beteiligt war.

Damit der Sauerstoffeinbau ausreichend schnell abläuft, muss man die Brennstoffzellen bei sehr hohen Temperaturen betreiben – bei etwa 700 bis 1000 Grad Celsius. Schon seit längerer Zeit ist man auf der Suche nach besseren Kathodenmaterialien, die eine niedrigere Betriebstemperatur erlauben. „Man kennt einige besonders interessante Kandidaten, zum Beispiel Strontium-dotiertes Lanthancobaltat, kurz LSC“, sagt Ghislain Rupp. Das große Problem dabei ist, dass diese Materialien nicht langfristig stabil bleiben. Irgendwann nimmt die Aktivität ab, die Leistung der Brennstoffzelle verringert sich. Über die genaue Ursache dafür gab es bisher nur Vermutungen.

Oberfläche gezielt verändert

Klar war allerdings: Die Oberfläche der Kathode, an der sich der Sauerstoff festsetzen und dann in die Brennstoffzelle wandern soll, spielt eine entscheidende Rolle. Daher entwickelte man an der TU Wien ein Verfahren, die Oberfläche gezielt zu verändern und gleichzeitig zu messen, wie sich das auf die elektrischen Eigenschaften der Brennstoffzelle auswirkt.

„Mit einem Laserpuls verdampfen wir verschiedene Materialien, die sich dann in winzigen Mengen an der Oberfläche anlagern“, erklärt Rupp. „So können wir fein dosiert die Zusammensetzung der Kathoden-Oberfläche modifizieren und gleichzeitig beobachten, wie sich dabei der Widerstand des Systems verändert.“

Zu viel Strontium schadet

So konnte man zeigen, dass Strontium-reiches Material an der Oberfläche schadet: „Wenn an der Oberfläche Strontium-Atome dominieren, wird Sauerstoff nur sehr schwer eingebaut“, sagt Rupp. „Die Kathodenoberfläche nimmt den Sauerstoff auf sehr inhomogene Weise auf: An bevorzugten Plätzen, etwa dort, wo Kobalt-Atome sitzen, funktioniert der Sauerstoff-Einbau gut, dort wo Strontium dominiert, gelangt kaum Sauerstoff in die Kathode.“ Das erklärt auch, warum die Brennstoffzellen mit der Zeit immer schlechter werden: Das Strontium aus dem Inneren des Materials wandert an die Oberfläche und bedeckt eben jene aktiven Kobalt-Zentren - der Brennstoffzelle bleibt die Luft weg.

Diese Ergebnisse liefern wichtige Hinweise darauf, wie der Sauerstoffeinbau grundsätzlich in Materialien wie LSC abläuft und welche Vorgänge für den Leistungsabfall von Brennstoffzellen verantwortlich sind. „Wir sind damit dem technischen Einsatz des Materials LSC für Brennstoffzellen einen wichtigen Schritt näher gekommen“, glaubt Rupp, „und unsere neue Untersuchungsmethode, die hochpräzise Beschichtung mit elektrischer Vermessung vereint, wird sicher auch in anderen Bereichen der Festkörperionik noch eine wichtige Rolle spielen.“

Originalpublikation:Ghislain M. Rupp et al, Real-time impedance monitoring of oxygen reduction during surface modification of thin film cathodes, Nature Materials, 2017. DOI: 10.1038/nmat4879

Bilderdownload: https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2017/brennstoffzelle

Rückfragehinweis:
Dr. Ghislain Rupp
Institut für Chemische Technologien und Analytik
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43 664 4112728
ghislain.rupp@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften