Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wandzellen der Blutgefäße steuern Metastasierung

08.01.2015

Wissenschaftler aus dem Deutschen Krebsforschungszentrum und der Medizinischen Fakultät Mannheim der Universität Heidelberg suchten nach neuen Wegen, um bei Krebserkrankungen die Entstehung von Metastasen zu verhindern. Dazu kombinierten sie einen Antikörper gegen ein zentrales Steuerprotein der Blutgefäßzellen mit einer niedrigdosierten Chemotherapie. So behandelte Mäuse entwickelten weniger Metastasen und überlebten länger.

Die Kombinationstherapie wirkt gleich mehrfach gegen eine Ansiedlung von Tochtergeschwülsten: Sie verhindert, dass Blutgefäße die neu entstehenden Metastasen versorgen. Gleichzeitig reduziert sie die Anzahl bestimmter Immunzellen, die die Ansiedlung von Krebszellen fördern.


Legende: Rasterelektronenmikroskopische Aufnahme einer Lungenmetastase: Tumorzellen (grün) formen solide Tumorknoten, die in engem Kontakt mit umgebenden Kapillaren (rot) stehen. Die wechselseitige Kommunikation zwischen Tumorzellen und Endothelzellen ermöglicht das Wachstum von Metastasen. Endothelzellen können das Tumorwachstum dabei aktiv fördern.

Quelle: Oliver Meckes (Eye of Science) / H. Augustin (DKFZ)

Bei vielen Krebserkrankungen gilt der Patient nach chirurgischer Entfernung des Tumors als krebsfrei. Doch bei einem großen Prozentsatz der Kranken hat der Tumor zu diesem Zeitpunkt bereits Zellen ausgestreut. Daher verordnen Ärzte im Anschluss an die Operation oft eine Chemotherapie, die abgesiedelte Krebszellen bekämpfen soll. Doch da es keine Methode gibt, diese gefährlichen Zellen direkt nachzuweisen, wissen Ärzte nicht, welcher Patient tatsächlich von der belastenden Therapie profitiert.

„Das ist ein großes Dilemma für viele Krebspatienten: Sollen sie sich für eine hochdosierte Chemotherapie mit allen schweren Nebenwirkungen entscheiden oder stattdessen ein höheres Risiko für Metastasen in Kauf nehmen?“, fragt Professor Hellmut Augustin. Seine Arbeitsgruppe am Deutschen Krebsforschungszentrum und der Medizinischen Fakultät Mannheim der Universität Heidelberg sucht daher nach schonenderen Alternativen, um die Entstehung von Tochtergeschwülsten zu unterdrücken.

Dabei setzen die Forscher auf neue wissenschaftliche Erkenntnisse, die eine weitaus aktivere Rolle der Wandzellen der Blutgefäße (Endothelzellen) für das Tumorwachstum nahelegen, als dies bisher bekannt war. Tumorzellen veranlassen Blutgefäße in ihrer Umgebung dazu, neue Kapillaren sprossen zu lassen, die den Tumor versorgen und sein Wachstum ermöglichen. Dieser „Angiogenese“ genannte Prozess wird bereits seit zehn Jahren therapeutisch genutzt; Angiogenese-hemmende Medikamente sollen die Wirkung etablierter Chemotherapeutika unterstützen.

Neuere Erkenntnisse zur Metastasierung weisen darauf hin, dass Endothelzellen darüber hinaus selbst zahlreiche Faktoren produzieren, die das Tumorwachstum fördern. Augustins Ansatz ist es daher, nicht nur die Gefäßbildung in Tumoren zu unterdrücken, sondern gleichzeitig die Produktion dieser Wachstumsfaktoren zu hemmen. In ihrer aktuellen Arbeit haben die Wissenschaftler das Molekül Angiopoietin-2 ins Visier genommen. Es wird von Endothelzellen gebildet und spielt eine zentrale Rolle bei der Angiogenese.

Die Forscher übertrugen Brust- oder Lungenkrebszellen auf Mäuse, ließen Tumoren heranwachsen und entfernten sie zu einem frühen Zeitpunkt operativ. Um Metastasen vorzubeugen, erhielten die Tiere nach der Operation verschiedene Arten der Chemotherapie sowie teilweise zusätzlich einen blockierenden Antikörper gegen Angiopoietin-2. Während die Chemotherapie allein nicht wirksam war, entwickelten mit dem Angiopoietin-2-Antikörper behandelten Tiere deutlich weniger Metastasen in Lunge und Knochen als ihre unbehandelten Artgenossen.

Gesteigert wurde dieser Effekt durch Kombination des Antikörpers mit einer so genannten metronomen Chemotherapie: Dabei werden die zytostatischen Substanzen niedrigdosiert dauerhaft verabreicht. Mäuse, die die Kombinationstherapie erhielten, lebten länger als Tiere, die nur mit dem Antikörper gegen Angiopoietin-2 behandelt wurden.

In anschließenden Gewebeanalysen untersuchten die Wissenschaftler, was die Kombinationstherapie genau bewirkt. Dabei entdeckten sie, dass Angiopoietin-2 nicht nur das Gefäßwachstum fördert, sondern darüber hinaus auf die Endothelzellen zurückwirkt und sie dazu anregt, tumorfördernde Makrophagen in die Umgebung der Krebszellen zu locken. Wurde Angiopoietin-2 blockiert, wanderten deutlich weniger krebsfördernde Immunzellen in die Tumorumgebung ein.

Die niedrigdosierte metronome Chemotherapie, die die Wirksamkeit des Therapieansatzes weiter steigerte, richtet sich im Gegensatz zur herkömmlichen Hochdosis-Chemotherapie nicht primär gegen die Tumorzellen selbst, sondern verhindert, dass sich bestimmte Zellen aus dem Knochenmark im Tumor ansiedeln, die ebenfalls das Tumorwachstum fördern.

„Mit unserer Kombinationstherapie gehen wir also von mehreren Seiten gleichzeitig gegen die Ansiedlung von Metastasen vor: Zum einen drosseln wir ihre Gefäßversorgung. Zum anderen verhindern wir, dass sich tumorfördernde Makrophagen ansiedeln, die eine entzündliche Umgebung schaffen und damit gewissermaßen den Boden für eine dauerhafte Ansiedlung der Krebszellen bereiten“, erklärt Hellmut Augustin.

„Wir können natürlich nicht voraussagen, ob sich die Ergebnisse dieser präklinischen Untersuchungen eins zu eins auf den Menschen übertragen lassen“, betont der Wissenschaftler. „Aber wir haben bei unseren Experimenten viel darüber gelernt, wie Metastasen entstehen. Das Wissen wollen wir nun gezielt in eine klinische Anwendung übersetzen.“

Kshitij Srivastava, Junhao Hu, Claudia Korn, Soniya Savant, Martin Teichert, Stephanie S. Kapel, Manfred Jugold, Eva Besemfelder, Markus Thomas, Manolis Pasparakis und Hellmut G. Augustin: Postsurgical adjuvant tumor therapy by combining anti-Angiopoietin-2 and metronomic chemotherapy limits metastatic growth. Cancer Cell 2014, DOI 10.1016/j.ccell.2014.11.005

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Im Deutschen Konsortium für Translationale Krebsforschung (DKTK), einem der sechs Deutschen Zentren für Gesundheitsforschung, unterhält das DKFZ Translationszentren an sieben universitären Partnerstandorten. Die Verbindung von exzellenter Hochschulmedizin mit der hochkarätigen Forschung eines Helmholtz-Zentrums ist ein wichtiger Beitrag, um die Chancen von Krebspatienten zu verbessern. Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Ansprechpartner für die Presse:

Dr. Stefanie Seltmann
Leiterin Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42-2854
F: +49 6221 42-2968
E-Mail: S.Seltmann@dkfz.de

Dr. Sibylle Kohlstädt
Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42 2843
F: +49 6221 42 2968
E-Mail: S.Kohlstaedt@dkfz.de

E-Mail: presse@dkfz.de

www.dkfz.de 

Dr. Stefanie Seltmann | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics