Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wahrscheinlichkeitsrechnung für optimalen Impfschutz: Neue Erkenntnisse über T-Zell-Entwicklung

31.07.2017

Kommt eine T-Zelle mit einem Antigen in Kontakt, vermehrt sie sich und erzeugt unterschiedliche Nachkommen. Die gängige Hypothese, dass diese Immunreaktion durch die individuelle Struktur des T-Zellrezeptors weitgehend vorbestimmt ist, wurde jetzt durch ein Team der Technischen Universität München (TUM) widerlegt. Stattdessen kann der Einfluss des T-Zellrezeptors nur durch Wahrscheinlichkeiten beschrieben werden. Solche mathematischen Modelle könnten helfen, Impfungen in Zukunft besser zu steuern.

Das erworbene Immunsystem schützt unseren Körper vor Bedrohungen wie Virus- und Bakterieninfektionen oder Krebs. Eine besondere Rolle spielen dabei die sogenannten T-Zellen. Jede von ihnen trägt einen individuellen Rezeptor auf ihrer Zellmembran. Diesen T-Zellrezeptor kann man sich als sehr spezialisierten Sensor vorstellen. Er passt zu genau einem Molekül, einem sogenannten Antigen, das sich beispielsweise auf der Außenhülle eines Virus befindet. Da die Rezeptoren individuell sind, gibt es auch zwischen zwei Rezeptoren, die das gleiche Antigen erkennen, kleine Unterschiede.


Prof. Dirk Busch (rechts) und Dr. Veit Buchholz (links) haben die Enwicklung einzelner T-Zellen untersucht.

U. Benz / TUM / Verwendung frei für Berichterstattung über die Technische Universität München unter Nennung des Copyrights.

Erkennt die T-Zelle mit ihrem Rezeptor das passende Antigen, geschehen zwei Dinge: Sie vermehrt sich stark und aus der ursprünglichen „naiven“ T-Zelle, die selbst nichts gegen die Bedrohung unternehmen kann, bilden sich neue Zelltypen.

Diese lassen sich grob in Effektorzellen und Gedächtniszellen einteilen. Effektorzellen schütten Stoffe aus, mit denen der eigentliche Kampf gegen die Bedrohung in Gang gesetzt wird, und verschwinden, wenn die Gefahr gebannt ist. Gedächtniszellen bleiben dagegen im Körper erhalten. Sie sorgen dafür, dass bei einer neuen Infektion mit dem gleichen Erreger die Immunreaktion besonders schnell in Gang kommt. Diesen Effekt macht man sich bei Impfungen zunutze.

Unterschiedliche Muster bei individuellen Zellen

Wie viele Zellen welchen Typs aus einer einzelnen naiven T-Zelle entstehen, variiert stark. Woran das genau liegt, ist in der Forschung umstritten. Eine Hypothese besagt, dass alles von den T-Zellrezeptoren abhängt. Dadurch, dass diese individuell aufgebaut sind, passen manche besser zu einem Antigen und binden stärker daran als andere. Es wurde angenommen, dass diese unterschiedliche Stärke der Verbindung von Antigen und individuellem T-Zellrezeptor die Entwicklung einer T-Zelle und ihrer Nachkommen weitgehend festlegt.

„Wir konnten zeigen, dass diese Erklärung nicht haltbar ist, wenn man untersucht, wie einzelne T-Zellen auf Infektionen reagieren“, sagt Dr. Veit Buchholz, Gruppenleiter am Institut für Medizinische Mikrobiologie, Immunologie und Hygiene der TUM und einer der Hauptautoren der Studie. Die Forscher untersuchten die Entwicklung von einzelnen T-Zellen, die mit identischen T-Zellrezeptoren ausgestattet waren und mit dem gleichen Antigen konfrontiert wurden.

„Das Ergebnis war eindeutig“, sagt Buchholz. „Folgt man der Hypothese, dass die Qualität der Verbindungen entscheidend ist, hätten die Ergebnisse alle das gleiche Muster zeigen müssen. Stattdessen erzeugten die einzelnen T-Zellen sehr unterschiedliche Mengen der verschiedenen Zelltypen.“

Gruppen von T-Zellen verhalten sich regelhaft

Das bedeutet jedoch nicht, dass die Entwicklung der T-Zellen völlig chaotisch abläuft. Beobachtet man statt einer einzelnen naiven T-Zelle mehrere solcher Zellen zugleich, zeigen sich auch in den Experimenten der TUM-Wissenschaftler die erwarteten Muster.
Diese scheinbar widersprüchlichen Ergebnisse bestärken die Hypothese der TUM Forscher. „Die Ergebnisse für einzelne T-Zellen variierten zwar stark, die verschiedenen Muster traten aber jeweils mit einer bestimmten Wahrscheinlichkeit auf“, sagt Prof. Dirk Busch, Direktor des Instituts für Medizinische Mikrobiologie und ebenfalls Hauptautor des Artikels.

In Kooperation mit der biomathematischen Forschungsgruppe von Dr. Michael Floßdorf, entwickelte das Team ein auf diesen Wahrscheinlichkeiten beruhendes mathematisches Modell. Dieses zeigt, dass die Ergebnisse aus der Einzelzell-Untersuchung, kombiniert man sie, den Ergebnissen für Zellgruppen entsprechen. Ein ähnliches Verfahren hatte das Team bereits 2013 auf eine andere Art der naiven T-Zellen angewendet.

Bedeutung für Impfschutz

Wenn die Gesetzmäßigkeiten für die Entwicklung einer Gruppe von T-Zellen bereits bekannt sind könnte man fragen, warum man einzelne T-Zellen überhaupt untersuchen sollte. „T-Zell-Immunantworten gegen Infektions- und Tumorerkrankungen gehen teilweise von sehr geringen Zellzahlen aus“, erläutert Prof. Dirk Busch. „Um den Ablauf dieser Immunantworten vorherzusagen, ist es wichtig zu verstehen, wie sich einzelne T-Zellen verhalten.“

In der Praxis könnten die Erkenntnisse von Buchholz, Busch und ihrem Team beispielsweise helfen, Impfungen zu verbessern auf die nur sehr wenige T-Zellen im Körper reagieren können, sagt Veit Buchholz: „Je besser wir die Wahrscheinlichkeiten verstehen, mit der nach einer Impfung schützende Gedächtniszellen gebildet werden, desto genauer können wir möglicherweise diesen Prozess mit verschiedenen Teilimpfungen steuern.“

Prof. Dirk Busch leitet die Fokusgruppe „Clinical Cell Processing and Purification“ am TUM Institute for Advanced Study (TUM-IAS). Ermöglicht wurde die Studie unter anderem durch Unterstützung der Deutschen Forschungsgemeinschaft (DFG) und das Bundesministeriums für Bildung und Forschung (BMBF).

Publikationen:

Y.-L. Cho, M. Flossdorf, L. Kretschmer, T. Höfer, D.H. Busch, V.R. Buchholz, TCR Signal Quality Modulates Fate Decisions of Single CD4+ T Cells in a Probabilistic Manner, Cell Reports (2017), DOI: 10.1016/j.celrep.2017.07.005

V.R. Buchholz, M. Flossdorf, I. Hensel, L. Kretschmer, B. Weissbrich, P. Gräf, A. Verschoor, M.Schiemann, T. Höfer, D.H. Busch, Disparate individual fates compose robust CD8+ T cell immunity. Science (2013). DOI: 10.1126/science.1235454

Kontakt:

Dr. med Veit Buchholz
Institut für Medizinische Mikrobiologie, Immunologie und Hygiene,
Klinikum rechts der Isar der
Technischen Universität München (TUM)
Tel: +49 89 4140-4156
veit.buchholz@tum.de

Mehr Informationen

Institut für Medizinische Mikrobiologie, Immunologie und Hygiene: http://www.mikrobio.med.tum.de/

Prof. Dirk Busch: http://www.professoren.tum.de/busch-dirk/

TUM-IAS: https://www.ias.tum.de/

Hochauflösende Bilder für die redaktionelle Berichterstattung
https://mediatum.ub.tum.de/1374902

Weitere Informationen:

http://www.cell.com/cell-reports/abstract/S2211-1247(17)30944-0 Artikel in Cell Reports (Open Access)

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik