Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wahrnehmungswechsel – Schlüssel zum Bewusstsein

19.11.2010
Tübinger Wissenschaftler nutzen das Phänomen der binokularen Rivalität beim Sehen als Schlüssel zum Bewusstsein

Mit wehendem Mantel, das rechte Auge fest zugekniffen, beobachtet Captain Blackbeard mit dem linken durch sein Fernrohr das Meer. Als der Pirat auch das rechte öffnet, verschwindet plötzlich das Meer.

Vor sich sieht er nur noch das Fernrohr in seiner Hand. Und dann ist das Meer, genauso plötzlich, wieder da. Was hier geschieht ist ein Wahrnehmungswechsel. Normalerweise rechnet das Gehirn die leicht unterschiedlichen Bilder der beiden Augen zu einem stimmigen Bild um.

Wenn sich die Sehinformationen jedoch widersprechen, wird nacheinander nur das Gesehene des einen und dann des anderen Auges wahrgenommen. Dieses Phänomen nennen Wissenschaftler „binokulare Rivalität“. Forscher um Andreas Bartels am Werner Reichardt-Centrum für Integrative Neurowissenschaften (CIN) und am Max-Planck-Institut für biologische Kybernetik in Tübingen haben dieses Phänomen nun genutzt, um einige der Schaltkreise im parietalen Kortex, die zum bewussten Sehen beitragen, zu entziffern.

Nicht alles was wir sehen, nehmen wir bewusst wahr. Die vielen Informationen, die täglich auf uns einströmen, zwingen unser Gehirn, sich auf die wichtigen Dinge zu konzentrieren. Unsere Wahrnehmung ist ein nie endender Prozess: Unser Gehirn selektiert, gruppiert und interpretiert. Obwohl wir zwei Augen haben, die unterschiedliche Dinge sehen, verschmelzen die Seheindrücke beider zu einem einzigen Bild – binokulares Sehen nennen es die Experten. Dass hier auch einmal etwas nicht glatt läuft, kommt vor: Spontane Wahrnehmungswechsel können dann auftreten, wenn sich die Sehinformationen der beiden Augen widersprechen. Dann wird nacheinander nur das Gesehene eines Auges wahrgenommen, während das des anderen unterdrückt wird. Unsere Wahrnehmung ändert sich in kurzen, aufeinander folgenden Intervallen. Das geschieht automatisch, wir können es nicht steuern.

Die Wissenschaftler Natalia Zaretskaya, Axel Thielscher, Nikos Logothetis und Andreas Bartels haben jetzt die Aktivität der Nervenzellen bei 15 Probanden im posterioren parietalen Kortex gestört, einem Areal der Großhirnrinde, welches unter anderem an der Zielauswahl von Augenbewegungen beteiligt ist. Während der Versuche wurde den Probanden jeweils ein Haus auf das eine und ein Gesicht auf das andere Auge projiziert. Das löste eine Wechselwahrnehmung aus, da das Gehirn die beiden Bilder nicht in Einklang bringen konnte. Wurde währenddessen der parietaler Kortex kurzzeitig mittels nicht-invasiver Magnetstimulation gestört, berichteten die Probanden über deutlich weniger Wahrnehmungswechsel.

„Unsere Versuche zeigten, dass der posteriore parietale Kortex ursächlich an der Auswahl beteiligt ist, welche Informationen von uns bewusst wahrgenommen werden“, erklärt Natalia Zaretskaya. „Dies beweist, dass er eine große Rolle in unserem visuellen Bewusstsein spielt.“

„Wenn wir die Nervenschaltkreise verstehen, die unserer Wahrnehmung zugrunde liegen, verstehen wir vielleicht etwas besser, wie Bewusstsein funktioniert“, sagt Andreas Bartels, Wissenschaftler am Centrum für Integrative Neurowissenschaften. „Zumindest bekommen wir so einen Einblick in die Prozesse, die das Ganze steuern.“

Originalpublikation:
Natalia Zaretskaya, Axel Thielscher, Nikos K. Logothetis, Andreas Bartels: Disrupting parietal function prolongs dominance durations in binocular rivalry, Current Biology (2010); doi: 10.1016/j.cub.2010.10.046
Kontakt:
Dr. Andreas Bartels
Werner Reichardt-Centrum für Integrative Neurowissenschaften (CIN)
Tel.: 07071 601-656
E-Mail: andreas.bartels@cin.uni-tuebingen.mpg.de
Stephanie Bertenbreiter (Presse- und Öffentlichkeitsarbeit)
Max-Planck-Campus Tübingen
Tel.: 07071 601-472
E-Mail: presse@tuebingen.mpg.de
Druckfähige Bilder erhalten Sie von der Presse- und Öffentlichkeitsabteilung. Bitte senden Sie uns bei Veröffentlichung einen Beleg.

Das Max-Planck-Institut für biologische Kybernetik forscht an der Aufklärung von kognitiven Prozessen auf experimentellem, theoretischem und methodischem Gebiet. Es beschäftigt rund 325 Mitarbeiterinnen und Mitarbeiter aus über 40 Ländern und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für biologische Kybernetik ist eines der 80 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Das Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN) ist eine interdiziplinäre Einrichtung der Universität Tübingen. Mehrere Fakultäten, das Max-Planck-Institut für Biologische Kybernetik, das Hertie Institut für Klinische Hirnforschung, das Fraunhofer Institut für Produktionstechnik und Automatisierung sind Teil des CIN, dessen disziplinübergreifendes Konzept zudem von einer Vielzahl interner und externer Partner unterstützt wird.

Die Wissenschaftler des CIN untersuchen die neuronalen Grundlagen von Hirnleistungen wie Wahrnehmung, Gedächtnis, Gefühle, Kommunikation und Handeln und wie Gehirnerkrankungen diese Leistungen beeinflussen.

Stephanie Bertenbreiter | Max-Planck-Institut
Weitere Informationen:
http://www.tuebingen.mpg.de
http://tuebingen.mpg.de/startseite/detail/wahrnehmungswechsel-schluessel-zum-bewusstsein.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kontinentalrand mit Leckage
27.03.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Neuen molekularen Botenstoff bei Lebererkrankungen entdeckt
27.03.2017 | Universitätsmedizin Mannheim

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE