Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wahrnehmung lässt sich trainieren

04.03.2011
Max-Planck-Wissenschaftler zeigen, wie flexibel das Gehirn Bilder verarbeitet

Unser Gehirn verarbeitet weit mehr Reize oder Sinneseindrücke, als uns bewusst ist. Häufig gelangen Bilder ganz unbemerkt in den Kopf: Die visuelle Information wird verarbeitet, dringt aber nicht in unser Bewusstsein. Was macht den Unterschied aus zwischen unbewusster und bewusster Wahrnehmung und kann man diese durch gezieltes Lernen verändern?

Fragen, deren Antworten nicht nur für die Grundlagenforschung bedeutsam sind, sondern auch für die Behandlung von Patienten mit Wahrnehmungsdefiziten, z. B. nach Schlaganfall. Wissenschaftler am MPI für Hirnforschung in Frankfurt/Main konnten nun zeigen, dass sich Sehen trainieren lässt. Dabei machten die Versuche deutlich, dass den Lerneffekten auf die bewusste Wahrnehmung andere Hirnareale zugrunde liegen als den Lerneffekten auf die reine Verarbeitung der Reize.

Visuelle Reize durchlaufen eine Reihe von Verarbeitungsstufen auf ihrem Weg vom Auge ins Gehirn. Wie dabei aus der Aktivität von Neuronen bewusste Wahrnehmung entstehen kann, ist eines der Rätsel, die die Neurophysiologen am MPI für Hirnforschung lösen wollen. „Wir wissen heute, dass die Verarbeitung von Reizen in der Hirnrinde auch noch im Erwachsenenalter hochgradig plastisch, also anpassungsfähig ist“, erklärt Caspar Schwiedrzik, der zusammen mit Wolf Singer und Lucia Melloni die Wahrnehmungsprozesse im Gehirn erforscht. In ihrer aktuellen Studie haben die Wissenschaftler nun untersucht, ob sich die Wahrnehmung durch langfristiges und systematisches Üben beeinflussen lässt bzw. ob sich ein solches Training darauf auswirkt, dass ein Reiz auch bewusst wahrgenommen werden kann.

Aus klinischen Studien weiß man: Manche Schlaganfallpatienten, die in Folge einer Schädigung der Sehrinde in einem Teil ihres Gesichtsfeldes erblindet sind, können Reize unterscheiden, die in diesen erblindeten Teil fallen. Dieses unbewusste Unterscheidungsvermögen lässt sich steigern, wenn die Patienten trainiert werden. Allerdings geben diese an, dass sie die Bilder nicht sehen. In einigen Fällen jedoch schien auch diese bewusste Wahrnehmung der Bilder mit dem Training besser zu werden. Kann man vielleicht lernen, „bewusst zu sehen“?

Um diese Frage mit gesunden Versuchspersonen zu beantworten, haben die Frankfurter Forscher einen Versuchsaufbau entwickelt, mit dem sich verschiedene Lerneffekte in der Wahrnehmung messen lassen. Den Versuchspersonen wurden auf einem Bildschirm in kurzen Abständen und in zufälliger Reihenfolge zwei unterschiedliche geometrische Formen gezeigt – Quadrat und Raute –, die sie unterscheiden sollten. Dabei wurde die Sichtbarkeit der Bilder eingeschränkt, indem jeweils kurz nach einem Bild eine „Maske“ auftauchte, die die Form unsichtbar machte.

Die Ausgangssituation war so gewählt, dass die Versuchspersonen die Bilder nicht auseinanderhalten konnten und dass die Bilder für sie auch subjektiv unsichtbar waren. Dann wurden die Versuchspersonen mehrere Tage lang trainiert. In einem Durchgang wurde jeweils ein Bild gezeigt und kurz darauf eine Maske. Sobald die Versuchsperson durch Knopfdruck anzeigte, welche Form gezeigt worden war und wie klar sie die Form tatsächlich gesehen hatte, kam der nächste Reiz und die nächste Maske, und immer so weiter, 600 Mal pro Tag. Nach mehreren Tagen konnten die Versuchspersonen die Zielreize besser unterscheiden. Aus ihren Einschätzungen bezüglich der Sichtbarkeit der Reize konnten die Wissenschaftler zudem schließen, dass auch die subjektive Wahrnehmung gesteigert wurde: Die Bilder drangen stärker ins Bewusstsein. Das bewusste Sehen erwies sich also ebenfalls als lernfähig.

Doch wie hängen die objektive, nicht notwendigerweise bewusste Verarbeitung von Reizen und die subjektive, bewusste Wahrnehmung zusammen? Um die einzelnen Prozesse der Signalverarbeitung im Gehirn noch besser zu verstehen und zu lokalisieren, wurde der Versuch noch einmal durchgeführt. Diesmal tauchten Bild und Maske in einem anderen Teil des Bildschirms auf. „Die Ergebnisse waren aufschlussreich“, erklärt Lucia Melloni: „Während der Lerneffekt auf die reine Verarbeitung der Reize, also die Unterscheidung der Formen, mit dem räumlichen Verschieben des Reizes verlorenging, blieb die klarere Sichtbarkeit der Bilder, also der Lerneffekt auf das bewusste Sehen, nach der Verschiebung des Reizes erhalten.“ Die objektive Verarbeitung und die subjektive Wahrnehmung der Reize scheinen demnach weniger eng verknüpft zu sein als bisher angenommen. Den beiden Trainingseffekten scheinen unterschiedliche Hirnareale zugrunde zu liegen.

„Unsere Versuche haben gezeigt, dass die neuronalen Prozesse, die der bewussten Wahrnehmung zugrunde liegen, sehr flexibel sind“, fasst Schwiedrzik die Ergebnisse zusammen. Sie liefern wichtige Informationen für die Medizin, insbesondere für die Rehabilitation von Menschen, die unter Wahrnehmungsdefiziten nach Hirnläsionen leiden.

Ansprechpartner
Dr. Lucia Melloni
Max-Planck-Institut für Hirnforschung, Frankfurt am Main
Telefon: +49 69 96769-268
Fax: +49 69 96769-327
E-Mail: melloni@mpih-frankfurt.mpg.de
Caspar M. Schwiedrzik
Max-Planck-Institut für Hirnforschung, Frankfurt am Main
Telefon: +49 69 96769-471
E-Mail: caspar.schwiedrzik@brain.mpg.de
Originalveröffentlichung
Caspar M. Schwiedrzik, Wolf Singer, Lucia Melloni
Subjective and objective learning effects dissociate in space and in time.
PNAS Early Edition, doi: 10.1073/pnas.1009147108

Dr. Lucia Melloni | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/1190945/gehirntraining_wahrnehmung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von Hefe für Demenzerkrankungen lernen
22.02.2018 | Heinrich-Heine-Universität Düsseldorf

nachricht Rettender Ritter in goldener Rüstung
22.02.2018 | Exzellenzcluster Entzündungsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics