Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wahrnehmung lässt sich trainieren

04.03.2011
Max-Planck-Wissenschaftler zeigen, wie flexibel das Gehirn Bilder verarbeitet

Unser Gehirn verarbeitet weit mehr Reize oder Sinneseindrücke, als uns bewusst ist. Häufig gelangen Bilder ganz unbemerkt in den Kopf: Die visuelle Information wird verarbeitet, dringt aber nicht in unser Bewusstsein. Was macht den Unterschied aus zwischen unbewusster und bewusster Wahrnehmung und kann man diese durch gezieltes Lernen verändern?

Fragen, deren Antworten nicht nur für die Grundlagenforschung bedeutsam sind, sondern auch für die Behandlung von Patienten mit Wahrnehmungsdefiziten, z. B. nach Schlaganfall. Wissenschaftler am MPI für Hirnforschung in Frankfurt/Main konnten nun zeigen, dass sich Sehen trainieren lässt. Dabei machten die Versuche deutlich, dass den Lerneffekten auf die bewusste Wahrnehmung andere Hirnareale zugrunde liegen als den Lerneffekten auf die reine Verarbeitung der Reize.

Visuelle Reize durchlaufen eine Reihe von Verarbeitungsstufen auf ihrem Weg vom Auge ins Gehirn. Wie dabei aus der Aktivität von Neuronen bewusste Wahrnehmung entstehen kann, ist eines der Rätsel, die die Neurophysiologen am MPI für Hirnforschung lösen wollen. „Wir wissen heute, dass die Verarbeitung von Reizen in der Hirnrinde auch noch im Erwachsenenalter hochgradig plastisch, also anpassungsfähig ist“, erklärt Caspar Schwiedrzik, der zusammen mit Wolf Singer und Lucia Melloni die Wahrnehmungsprozesse im Gehirn erforscht. In ihrer aktuellen Studie haben die Wissenschaftler nun untersucht, ob sich die Wahrnehmung durch langfristiges und systematisches Üben beeinflussen lässt bzw. ob sich ein solches Training darauf auswirkt, dass ein Reiz auch bewusst wahrgenommen werden kann.

Aus klinischen Studien weiß man: Manche Schlaganfallpatienten, die in Folge einer Schädigung der Sehrinde in einem Teil ihres Gesichtsfeldes erblindet sind, können Reize unterscheiden, die in diesen erblindeten Teil fallen. Dieses unbewusste Unterscheidungsvermögen lässt sich steigern, wenn die Patienten trainiert werden. Allerdings geben diese an, dass sie die Bilder nicht sehen. In einigen Fällen jedoch schien auch diese bewusste Wahrnehmung der Bilder mit dem Training besser zu werden. Kann man vielleicht lernen, „bewusst zu sehen“?

Um diese Frage mit gesunden Versuchspersonen zu beantworten, haben die Frankfurter Forscher einen Versuchsaufbau entwickelt, mit dem sich verschiedene Lerneffekte in der Wahrnehmung messen lassen. Den Versuchspersonen wurden auf einem Bildschirm in kurzen Abständen und in zufälliger Reihenfolge zwei unterschiedliche geometrische Formen gezeigt – Quadrat und Raute –, die sie unterscheiden sollten. Dabei wurde die Sichtbarkeit der Bilder eingeschränkt, indem jeweils kurz nach einem Bild eine „Maske“ auftauchte, die die Form unsichtbar machte.

Die Ausgangssituation war so gewählt, dass die Versuchspersonen die Bilder nicht auseinanderhalten konnten und dass die Bilder für sie auch subjektiv unsichtbar waren. Dann wurden die Versuchspersonen mehrere Tage lang trainiert. In einem Durchgang wurde jeweils ein Bild gezeigt und kurz darauf eine Maske. Sobald die Versuchsperson durch Knopfdruck anzeigte, welche Form gezeigt worden war und wie klar sie die Form tatsächlich gesehen hatte, kam der nächste Reiz und die nächste Maske, und immer so weiter, 600 Mal pro Tag. Nach mehreren Tagen konnten die Versuchspersonen die Zielreize besser unterscheiden. Aus ihren Einschätzungen bezüglich der Sichtbarkeit der Reize konnten die Wissenschaftler zudem schließen, dass auch die subjektive Wahrnehmung gesteigert wurde: Die Bilder drangen stärker ins Bewusstsein. Das bewusste Sehen erwies sich also ebenfalls als lernfähig.

Doch wie hängen die objektive, nicht notwendigerweise bewusste Verarbeitung von Reizen und die subjektive, bewusste Wahrnehmung zusammen? Um die einzelnen Prozesse der Signalverarbeitung im Gehirn noch besser zu verstehen und zu lokalisieren, wurde der Versuch noch einmal durchgeführt. Diesmal tauchten Bild und Maske in einem anderen Teil des Bildschirms auf. „Die Ergebnisse waren aufschlussreich“, erklärt Lucia Melloni: „Während der Lerneffekt auf die reine Verarbeitung der Reize, also die Unterscheidung der Formen, mit dem räumlichen Verschieben des Reizes verlorenging, blieb die klarere Sichtbarkeit der Bilder, also der Lerneffekt auf das bewusste Sehen, nach der Verschiebung des Reizes erhalten.“ Die objektive Verarbeitung und die subjektive Wahrnehmung der Reize scheinen demnach weniger eng verknüpft zu sein als bisher angenommen. Den beiden Trainingseffekten scheinen unterschiedliche Hirnareale zugrunde zu liegen.

„Unsere Versuche haben gezeigt, dass die neuronalen Prozesse, die der bewussten Wahrnehmung zugrunde liegen, sehr flexibel sind“, fasst Schwiedrzik die Ergebnisse zusammen. Sie liefern wichtige Informationen für die Medizin, insbesondere für die Rehabilitation von Menschen, die unter Wahrnehmungsdefiziten nach Hirnläsionen leiden.

Ansprechpartner
Dr. Lucia Melloni
Max-Planck-Institut für Hirnforschung, Frankfurt am Main
Telefon: +49 69 96769-268
Fax: +49 69 96769-327
E-Mail: melloni@mpih-frankfurt.mpg.de
Caspar M. Schwiedrzik
Max-Planck-Institut für Hirnforschung, Frankfurt am Main
Telefon: +49 69 96769-471
E-Mail: caspar.schwiedrzik@brain.mpg.de
Originalveröffentlichung
Caspar M. Schwiedrzik, Wolf Singer, Lucia Melloni
Subjective and objective learning effects dissociate in space and in time.
PNAS Early Edition, doi: 10.1073/pnas.1009147108

Dr. Lucia Melloni | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/1190945/gehirntraining_wahrnehmung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wüstenameisen lassen sich nicht in die Irre führen
23.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Up-Scaling: Katalysatorentwicklung im Industriemaßstab
22.11.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

23.11.2017 | Geowissenschaften

Leistungsfähigere und sicherere Batterien

23.11.2017 | Energie und Elektrotechnik

Ein MRT für Forscher im Maschinenbau

23.11.2017 | Maschinenbau