Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit den Waffen des Immunsystems

05.04.2012
Mikroorganismen entscheiden über die Entstehung von rheumatischen Erkrankungen

Wenn die richtigen Mikroorganismen am Werk sind, können Immunzellen, die an der Entstehung von Autoimmunerkrankungen wie Schuppenflechte, Multiple Sklerose und Arthritis beteiligt sind, antientzündliche Eigenschaften entwickeln.

Diese Entdeckung machten jetzt Wissenschaftlerinnen und Wissenschaftler der Charité – Universitätsmedizin Berlin und des Institute for Research in Biomedicine in Bellinzona, Schweiz. Ihre Arbeit ist in der aktuellen Ausgabe des Wissenschaftsjournals Nature veröffentlicht.*

Die Wissenschaftler konnten nachweisen, dass bestimmte Pilze Immunzellen, die an der Entstehung dieser Erkrankungen beteiligt sind, aktivieren, während andere Mikroorganismen, insbesondere Bakterien, die natürlicherweise unsere Haut besiedeln, ihnen eine antientzündliche Funktion verleihen.

„Damit zeigt sich nicht nur, dass die Zusammensetzung unserer Mikroflora einen entscheidenden Einfluss auf die Entstehung chronischer Erkrankungen hat, sondern auch, dass die entscheidenden krankheitsverursachenden Zellen einen antientzündlichen ‚Zwilling‘ entwickeln können“, erklärte Dr. Christina Zielinski, die Erstautorin der Studie.

Die 32-jährige Forscherin von der Klinik für Dermatologie und Allergologie der Charité sowie der Berlin-Brandenburg School for Regenerative Therapies und ihre Kollegen identifizierten die wesentlichen Signale, die dazu beitragen, ob eine krankheitserregende oder eine antientzündliche Immunzelle entsteht. Hierbei stellte sich heraus, dass Interleukin 1b, ein körpereigenes Hormon des Immunsystems, wie ein molekularer Schalter wirkt. Seine Anwesenheit trainiert die Immunzellen, im Autoimmungeschehen destruktiv zu funktionieren und entzündliche Botenstoffe auszuscheiden. Seine Abwesenheit hingegen lässt die Immunzellen zu antientzündlichen Zellen reifen. Interessanterweise sind es unsere körpereigenen Mikroorganismen, die entscheiden, ob Interleukin 1b produziert wird und somit, welcher Modus gewählt wird.

Diese Beobachtung veranlasste die Wissenschaftler, auch nach Patienten zu suchen, die eine Überproduktion von Interleukin 1b aufwiesen. Dies ist bei den sogenannten autoinflammatorischen Erkrankungen (z.B. CAPS-Syndrom, Muckle-Wells Syndrom, Schnitzler-Syndrom) der Fall. Diese Patienten, vor allem Kinder, leiden an multiplen Symptomen wie Fieber, Arthritis und Hautausschlägen. Die genaue Entwicklung dieser Krankheiten ist jedoch noch weitgehend ungeklärt. Die Forscher testeten, ob eine Therapie mit Antikörpern, die Interleukin 1b blockiert, ein antientzündliches Potential in den Immunzellen generieren kann.
Tatsächlich produzierten die Immunzellen nach Einleitung dieser Therapie entzündungshemmende Immunbotenstoffe. Sie entwickelten sogar ein Gedächtnis dafür, die Botenstoffe über lange Zeiträume auszuschütten.

„Ich bin davon überzeugt, dass eine Dysbalance unserer mikrobiellen Mikroflora einen entscheidenden Einfluss auf die Entstehung chronisch entzündlicher Erkrankungen wie Rheuma, Morbus Crohn und Schuppenflechte hat. Unser Organismus besteht aus zehnmal mehr mikrobiellen Zellen als körpereigenen Zellen. Diese in Schach zu halten ist nicht einfach. Interleukin 1b stellt sich nun als ein entscheidender molekularer Schalter dar, dessen sich die Mikroben bedienen um zwischen krank oder gesund zu bestimmen“, sagt Dr. Christina Zielinski. Sie sieht ein großes Potential in der Therapie entzündlicher Erkrankungen über eine Blockade dieses Botenstoffes. Im Gegensatz zu anderen Immuntherapien führt dies nicht zu einer Immunschwächung, sondern erlaubt den Zellen stattdessen, bei Bedarf antientzündlich zu reagieren ohne ihre Fähigkeit zu verlieren, gefährliche Krankheitserreger zu bekämpfen.

*Zielinski CE, Mele F, Aschenbrenner D, Jarrossay D, Ronchi F, Gattorno M,Monticelli S, Lanzavecchia A, Sallusto F. Pathogen-induced human T(H)17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature. 2012 Apr 1. doi: 10.1038/nature10957.

Kontakt:
Dr. med. Christina Zielinski
Klinik für Dermatologie und Allergologie
Charité – Universitätsmedizin Berlin
t: +49 30 450 518 213
christina.zielinski@charite.de

Dr. Julia Biederlack | idw
Weitere Informationen:
http://www.derma.charite.de/
http://www.bsrt.de/
http://www.ncbi.nlm.nih.gov/pubmed/22466287

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nerven steuern die Bakterienbesiedlung des Körpers
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Mit künstlicher Intelligenz zum chemischen Fingerabdruck
26.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie