Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wärme und Sauerstoffmangel setzen Meeresbewohner zunehmend unter Druck

05.06.2015

Wer leben will, muss atmen und ausreichend Energie aufbringen, um sich zu bewegen, Nahrung zu suchen oder sich fortzupflanzen. Dieser Leitsatz gilt für uns Menschen ebenso wie für die Tierwelt der Ozeane. Den meisten Meerestieren werden diese überlebenswichtigen Tätigkeiten künftig jedoch schwerer fallen.

Das zeigt eine neue Studie im Fachmagazin Science, in der deutsche und US-amerikanische Biologen erstmals einen allgemeingültigen Grundsatz zu den gemeinsamen Auswirkungen der Ozeanerwärmung und des Sauerstoffmangels auf das Leistungsvermögen der Meeresbewohner definiert haben.


Der Polardorsch Boreogadus saida in der Arktis.

Foto: Hauke Flores, Alfred-Wegener-Institut

Ihr Fazit: Im Zuge des Klimawandels werden die Tiere ihren Sauerstoff- und Energiebedarf in ihren sich verändernden angestammten Lebensräumen kaum mehr decken können. Die Folge: Die Arten wandern in kühlere Regionen oder größere Wassertiefen ab, Ökosysteme werden umgewälzt, die Artenvielfalt schrumpft.

Um die Auswirkungen des Klimawandels auf das Leben in den Weltmeeren genauer und global vorhersagen zu können, suchen Meeresbiologen seit langem nach allgemein gültigen Prinzipien, mit denen sich die Lebensbedingungen in den Ozeanen und deren Grenzen beschreiben lassen. Eine Kernfrage dabei lautet: Wie wirken sich die Erwärmung der Meere und die damit verbundene Abnahme des Sauerstoffgehaltes im Wasser auf das Leistungsvermögen der Meereslebewesen aus?

Denn: „Soll ein Tier etwas leisten, kostet dies Energie, die das Tier zusätzlich zu seinem Grundumsatz aufbringen muss. Meereslebewesen gewinnen diese zusätzliche Energie, indem sie mehr Sauerstoff aus dem Wasser aufnehmen und veratmen. In welchem Ausmaß dies jedoch möglich ist, hängt zum einen von der Wassertemperatur ab; zum anderen von der Frage, wie empfindlich diese Art auf Sauerstoffmangel reagiert“, erläutert Co-Autor und Meeresbiologe Prof. Hans-Otto Pörtner vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung.

Er und seine US-amerikanischen Kollegen Curtis Deutsch, Brad Seibel, Aaron Ferrel und Raymond B. Huey haben in der neuen Studie die Fähigkeit der Tiere, ihren Energieumsatz zu steigern, für ausgewählte Tierarten berechnet und im Anschluss mit den Temperaturen und den Sauerstoffkonzentrationen der Weltmeere in Beziehung gesetzt.

Dabei herausgekommen ist ein sogenannter Stoffwechselindex für jede Art, der für sauerstoff-atmende Meeresbewohner eine deutliche Grenze definiert: „Meerestiere wie zum Beispiel Aalmuttern, Steinkrabben oder Kabeljau können nur dort leben, wo sie so viel Sauerstoff vorfinden, dass sie bei Bedarf ihre Stoffwechselrate um das Zwei- bis Fünffache des Grundumsatzes steigern können.

Das heißt, jede Tierart hat sich nicht nur auf einen bestimmten Temperaturbereich spezialisiert. Um zu überleben, ist sie auch auf einen ausreichend hohen Sauerstoffgehalt angewiesen“, sagt Erstautor Curtis Deutsch von der Universität Washington, Seattle.

Im Zuge des fortschreitenden Klimawandels stellt sich für die Meeresbewohner deshalb folgendes Problem: Je wärmer das Wasser wird, desto weniger Sauerstoff kann es aufnehmen und speichern. Gleichzeitig benötigen die Tiere im wärmeren Wasser mehr Energie und Sauerstoff, um ihren Grundumsatz sicherzustellen. Das wiederum bedeutet: Je wärmer die Meere werden, desto weiter sinkt die Fähigkeit seiner Bewohner, ihren Sauerstoffverbrauch je nach Art um das Zwei- bis Fünffache ihres Grundumsatzes zu steigern und somit Bewegung, Futtersuche oder Fortpflanzung zu ermöglichen.

„Wird es zu warm und unterschreitet der Sauerstoffgehalt einer Meeresregion die artspezifischen Mindestanforderungen der Lebewesen, müssen die Tiere ihren angestammten Lebensraum verlassen. Meist wandern sie dann in kühlere Regionen ab. Das heißt, sie verlagern ihre Lebensräume entweder polwärts oder in größere Wassertiefen. Beim Kabeljau und vielen anderen Fischarten beobachten wir diese Verschiebung des Lebensraumes schon jetzt“, sagt Hans-Otto Pörtner.

Dieses Phänomen der Artenverschiebung können die Wissenschaftler in ihrer Studie für alle Breitengrade vorhersagen. Zudem verstärkt es sich in jenen Regionen, in denen der Sauerstoffgehalt des Wassers zusätzlich sinkt, etwa durch die zunehmende Wasserschichtung oder weil der Mensch viele Nährstoffe in das Meer einleitet, welche dann wiederum das Wachstum sauerstoffzehrender Mikroorganismen forcieren.

Besonders deutliche Veränderungen der Tierwelt erwarten die Forscher für die Polarmeere. „Im Nord- und Südpolarmeer ist das Wasser sehr kalt, aber auch sehr sauerstoffreich. Die dort lebende Tierwelt hat sich im Laufe der Evolution auf diese Lebensbedingungen eingestellt und wird nur wenige Anpassungsmöglichkeiten haben, wenn es zu der kombinierten Erwärmung und Sauerstoffabnahme kommt. Stattdessen werden wärmeliebende Arten Einzug halten, die an höhere Wassertemperaturen und geringere Sauerstoffkonzentrationen angepasst sind. Sie werden die polaren Arten verdrängen“, sagt Hans-Otto Pörtner.

Im Nordpazifik zum Beispiel beobachten Forscher schon jetzt einen stärkeren Rückgang der Sauerstoffkonzentration als wärmebedingt erwartet wurde. In solchen Meeresregionen verengt sich die geografische Verbreitung der Arten drastisch, was natürlich zur Folge hat, dass dort auch die Fischerei in einem großen Maße von den Veränderungen betroffen ist.

Aus Forscherperspektive bietet das neue Konzept des Stoffwechselindexes nun die Chance, bessere Vorhersagen zu treffen. „Wir haben jetzt einen universellen Ansatz zur Verfügung, um die klimabedingten Veränderungen der geografischen Verbreitung von Arten und ihrer Produktivität besser zu erfassen“, sagt Hans-Otto Pörtner. Jetzt sei es Aufgabe der Wissenschaft, weitere Arten auf ihren Stoffwechselindex und dessen Grenzen hin zu untersuchen. „Nach und nach kann so ein komplettes Bild dessen entstehen, was wir in unserer Studie in den ersten Zügen skizziert haben“, so Hans-Otto Pörtner.

Hinweise für Redaktionen:
Die Studie erscheint in der Science-Ausgabe vom 5. Juni 2015 und trägt den Titel:
Curtis Deutsch, Aaron Ferrel, Brad Seibel, Hans-Otto Pörtner, Raymond B. Huey: Climate change tightens a metabolic constraint on marine habitats, Science 5-Jun-2015

Druckbares Bildmaterial finden Sie unter http://www.awi.de/de/aktuelles_und_presse/pressemitteilungen/.

Ansprechpartnerin in der AWI-Presstestelle ist Sina Löschke (Tel: 0471 4831 2008; E-Mail: medien@awi.de).

Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der mittleren und hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der 18 Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Ralf Röchert | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics