Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wachstumsfaktor EGF beschleunigt die Zellkernteilung

14.05.2013
Heidelberger Wissenschaftler finden neue Ansatzpunkte für die Krebsbehandlung

Neue Ansatzpunkte für die Behandlung von Krebserkrankungen haben Biologen der Universität Heidelberg gewonnen. Sie haben untersucht, wie ein spezielles Signalmolekül, der „Epidermale Wachstumsfaktor“ (EGF), die Chromosomentrennung von Zellen stimuliert. Die Wissenschaftler konnten zeigen, dass EGF die Geschwindigkeit der Teilung des Zellkerns, der sogenannten Mitose, beschleunigt und zudem die Genauigkeit bei der Trennung der Chromosomen erhöht.

„Da bei vielen Krebsarten die Regulation des EGF-Wegs stark verändert ist, geben uns diese Forschungsergebnisse wichtige Hinweise für die Krebstherapie“, sagt Prof. Dr. Elmar Schiebel vom Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH). Das Team um Prof. Schiebel hat die Forschungsergebnisse zusammen mit Wissenschaftlern der Universität Leicester, des European Molecular Biology Laboratory und des Deutschen Krebsforschungszentrums in der Fachzeitschrift „Developmental Cell“ veröffentlicht.

„Die Duplikation von Zellen ist ein extrem wichtiger und hoch regulierter Prozess, dessen Fehlregulation zu der Entstehung von Krebs führen kann“, erklärt Prof. Schiebel. Die Mitose ist dabei der Abschnitt in der Zellduplikation, in dem die genetische Information durch den Spindelapparat auf die Tochterzellen verteilt wird. Die Ausbildung des Spindelapparats beginnt mit der Auflösung der fadenartigen Verbindungen zwischen den Centrosomen, die für die Organisation der Spindelfasern sorgen. Die Spindelfasern, die wiederum für die Trennung der Chromosomen im Prozess der Zellteilung verantwortlich sind, binden zu Beginn der Mitose an das genetische Material und bewegen es in Richtung der Spindelpole. Darauf folgt die Teilung der Zelle in zwei Tochterzellen. „Die vorliegende Arbeit hat jetzt gezeigt, dass sich die Centrosomen von Zellen, die mit dem Wachstumsfaktor EGF stimuliert wurden, früher voneinander trennen als in Zellen mit geringer Stimulation. Dies führt dazu, dass die Mitose schneller und präziser abläuft“, sagt Prof. Schiebel.

Die Forschungsergebnisse haben ihre besondere Bedeutung im Hinblick auf bestimmte Therapeutika in der Krebsbehandlung, die die Spindelfasern blockieren und dadurch die Aufteilung der Chromosomen in der Mitose verhindern. Dadurch werden die Krebszellen, die sich häufiger teilen als gesunde Zellen, selektiv abgetötet. Wie Prof. Schiebel erläutert, haben Zytostatika wie Taxol jedoch erhebliche Nebenwirkungen. Deshalb suchen Forscher nach anderen mitotischen Ansatzpunkten als Ziele für die Behandlung von Krebs.

Nach Angaben von Prof. Schiebel ist das Motorprotein Eg5 ein Kandidat dafür, da dieses Protein von entscheidender Bedeutung für die Zellkernteilung ist. Eg5 vermittelt die Trennung der zwei Spindelpole, was zur korrekten Aufteilung der Chromosomen auf die Tochterzellen führt. Wird nun Eg5 durch synthetische Wirkstoffe wie Monastrol oder STLC gehemmt, stoppt der Zellzyklus in der Mitose. Dies führt in der Folge zum programmierten Zelltod, die „defekten Zellen“ werden eliminiert.

Die Gruppe um Prof. Schiebel hat nun aber herausgefunden, dass Zellen, die durch den Wachstumsfaktor EGF stimuliert werden, bei der Zellkernteilung auf die Funktion von Eg5 verzichten und die Mitose auch ohne das Motorprotein durchführen können. Dadurch verlieren Substanzen wie Monastrol oder STLC ihre Wirksamkeit zum Abtöten von Krebszellen mit hoher EGF-Regulation. „Im Hinblick auf neue Ansätze in der Krebsbehandlung ergibt sich daraus, dass nicht nur das Eg5-Protein, sondern auch der EGF-Weg blockiert werden muss“, erklärt Prof. Schiebel. „Ob diese neue Strategie tatsächlich in der Anwendung beim Patienten erfolgreich ist, muss in den nächsten Schritten in klinischen Studien getestet werden.“

Originalveröffentlichung:
B. R. Mardin, M. Isokane, M. R. Cosenza, A. Krämer, J. Ellenberg, A. M. Fry, and E. Schiebel:
EGF-Induced Centrosome Separation Promotes Mitotic Progression and Cell Survival;
Developmental Cell 25, 229-240, May 13, 2013), doi: 10.1016/j.devcel.2013.03.012

Kontakt:
Prof. Dr. Elmar Schiebel
Zentrum für Molekulare Biologie der Universität Heidelberg
Telefon (06221) 54-6814
schiebel.elmar@zmbh.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Tel. +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie