Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Wachstumsbremse im Rückenmark lösen

08.02.2012
Die neue Arbeitsgruppe von Prof. Frank Bradke am DZNE untersucht, wie man Nervenzellen nach einer Querschnittslähmung dazu anregen kann, sich zu regenerieren
Während Knochenbrüche, Muskelrisse oder Wunden der Haut meist von alleine heilen, ist das im Rückenmark anders. Wird das Rückenmark durchtrennt, wächst es nicht wieder zusammen – die Folge: Querschnittslähmung. Warum das so ist und wie man querschnittsgelähmten Personen dennoch helfen kann, untersucht Prof. Frank Bradke mit seiner neuen Arbeitsgruppe am Deutschen Zentrum für Neurodegenerative Erkrankungen (DZNE) in Bonn.

Nervenzellen im zentralen Nervensystem sind von einer Myelinschicht umgeben. Diese Schicht schützt die Nervenzellen, verhindert aber auch ihre Regeneration nach Verletzungen. Sie enthält eine ganze Reihe von Molekülen, die das Nachwachsen der Nervenfasern verhindern können – "vergleichbar mit Stoppschildern im Straßenverkehr", sagt Bradke. Begegnet eine Nervenfaser einem solchen Stoppschild, wächst sie nicht weiter. Weltweit arbeiten Wissenschaftler daran, diese wachstumshemmenden Moleküle zu identifizieren. Bradke aber hat einen anderen Ansatz gewählt: Mit seiner Arbeitsgruppe konzentriert er sich auf die Nervenzellen selbst. Warum halten sie sich an die Stoppschilder? Kann man die Nervenzellen dazu bringen, Stoppschilder zu ignorieren und einfach trotzdem weiter zu wachsen? "Wir versuchen sozusagen, Nervenzellen zu etwas draufgängerischeren Verkehrsteilnehmern zu machen", sagt Bradke. Dass dieser Ansatz sehr erfolgversprechend ist, haben seine bisherigen Arbeiten bereits bewiesen: Im Tiermodell konnte er zeigen, dass geringe Mengen von Taxol – einen Wirkstoff, der auch in der Krebstherapie eingesetzt wird – das Zellskelett der Nervenzellen so stabilisiert, dass durchtrennte Nervenzellen wieder zum Wachstum angeregt werden.

Bradkes Idee, dass ausgerechnet Taxol hier helfen könnte, ging eine jahrelange Erforschung der Entwicklung von Nervenzellen voraus. In einem frühen Stadium der Entwicklung beginnt eine Nervenzelle eine Vielzahl von zellulären Fortsätzen zu produzieren. Einer dieser Fortsätze wird zum Axon und wächst schnell. Axone können im Rückenmark von Menschen bis zu einem Meter lang werden, sie leiten elektrische Nervensignale an nachstehende Zellen weiter. Alle anderen Fortsätze werden zu Dendriten – sie sind kürzer und dienen dazu, Signale von vorgeschalteten Nervenzellen zu empfangen. Schon während seiner Doktorarbeit untersuchte Bradke, wie sich die Entwicklung des Axons von dem der Dendriten unterscheidet und warum Axone weiter wachsen, während Dendriten anfänglich während der Entwicklung erstmal nicht weiterwachsen.
Eine wesentliche Rolle dabei, so zeigte Bradke, spielt das Zellskelett. In der Wachstumszone am Ende des Axons liegen so genannte Aktin-Bündel. Diese müssen flexibel genug sein, damit das Axon wachsen kann. Im Axon selbst liegen Mikrotubuli, die den langen Fortsätzen der Nervenzellen ihre Struktur geben. In der Wachstumszone müssen diese stabil genug sein, um die Aktinfilamente nach vorne zu schieben. Nur wenn Mikrotubuli stabil und Aktin-Filamente instabil genug sind, kann ein Nervenfortsatz wachsen. Bei Axonen ist dies der Fall, bei Dendriten nicht. Aber auch nach Verletzungen im Rückenmark sind Mikrotubuli in den Axonen zerbrochen und instabil – das Axon kann dementsprechend nicht mehr wachsen. Wäre es also möglich, so fragte Bradke, dass allein durch die Stabilisierung der Mikrotubuli die Wachstumsfähigkeit der Axone wieder hergestellt wird? Taxol ist eine Substanz, die Mikrotubuli stabilisiert. In der Tat konnten Bradke und seine Kollegen zeigen, dass die Gabe von geringen Mengen von Taxol das Zellskelett so beeinflusst, dass ein Nervenwachstum ermöglicht wird. "Taxol hat darüber hinaus auch noch die Eigenschaft, die Narbenbildung zu verhindern. Auch das erleichtert die Regeneration der Nervenfasern erheblich", sagt Bradke.

Noch sind diese Forschungsergebnisse weit davon entfernt, zur Anwendung zu kommen und Patienten zu helfen, sie geben aber wichtige Hinweise auf neue mögliche Ansatzpunkte. Eine direkte Beeinflussung des Zellskeletts kann das Wachstum von Nervenzellen fördern. "Unsere Forschung kann langfristig auch dazu beitragen, neurodegenerativer Erkrankungen des Gehirns wie Schlaganfall, Parkinson oder Alzheimer besser zu verstehen, denn auch hier werden Nervenzellen geschädigt und Axone verlieren ihre Kontakte zu nachgeschalteten Zellen", so Bradke.

Frank Bradke studierte an der Freien Universität Berlin und dem University College London. 1994 erhielt er den Bachelor of Science in Anatomie und Entwicklungsbiologie, 1995 das Diplom in Biochemie. Während seiner Dissertation forschte er am Europäischen Laboratorium für Molekularbiologie (EMBL), Heidelberg. Als Postdoc wechselte er 2000 an die University of California, San Francisco und Stanford und war anschließend Arbeitsgruppenleiter am Max-Planck-Institut für Neurobiologie, Martinsried. Frank Bradke habilitierte 2009 an der Ludwig Maximilians Universität München. Seit 2011 ist er ordentlicher Professor und Senior Gruppenleiter der Arbeitsgruppe Axonales Wachstum und Regeneration am DZNE in Bonn.

Kontaktinformation:
Dr. Katrin Weigmann
Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)
Presse- und Öffentlichkeitsarbeit
Email: katrin.weigmann@dzne.de
Tel: +49 (0) 228 43302 /263
Mobil: +49 (0) 173 – 5471350

Katrin Weigmann | idw
Weitere Informationen:
http://www.dzne.de/standorte/bonn-koeln-juelich/forschergruppen/bradke.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Hemmung von microRNA-29 schützt vor Herzfibrosen
20.11.2017 | Technische Universität München

nachricht Satellitenbilder zur Erfassung von Biodiversität nur bedingt tauglich
20.11.2017 | Helmholtz-Zentrum für Umweltforschung - UFZ

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie