Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Wachstumsbremse im Rückenmark lösen

08.02.2012
Die neue Arbeitsgruppe von Prof. Frank Bradke am DZNE untersucht, wie man Nervenzellen nach einer Querschnittslähmung dazu anregen kann, sich zu regenerieren
Während Knochenbrüche, Muskelrisse oder Wunden der Haut meist von alleine heilen, ist das im Rückenmark anders. Wird das Rückenmark durchtrennt, wächst es nicht wieder zusammen – die Folge: Querschnittslähmung. Warum das so ist und wie man querschnittsgelähmten Personen dennoch helfen kann, untersucht Prof. Frank Bradke mit seiner neuen Arbeitsgruppe am Deutschen Zentrum für Neurodegenerative Erkrankungen (DZNE) in Bonn.

Nervenzellen im zentralen Nervensystem sind von einer Myelinschicht umgeben. Diese Schicht schützt die Nervenzellen, verhindert aber auch ihre Regeneration nach Verletzungen. Sie enthält eine ganze Reihe von Molekülen, die das Nachwachsen der Nervenfasern verhindern können – "vergleichbar mit Stoppschildern im Straßenverkehr", sagt Bradke. Begegnet eine Nervenfaser einem solchen Stoppschild, wächst sie nicht weiter. Weltweit arbeiten Wissenschaftler daran, diese wachstumshemmenden Moleküle zu identifizieren. Bradke aber hat einen anderen Ansatz gewählt: Mit seiner Arbeitsgruppe konzentriert er sich auf die Nervenzellen selbst. Warum halten sie sich an die Stoppschilder? Kann man die Nervenzellen dazu bringen, Stoppschilder zu ignorieren und einfach trotzdem weiter zu wachsen? "Wir versuchen sozusagen, Nervenzellen zu etwas draufgängerischeren Verkehrsteilnehmern zu machen", sagt Bradke. Dass dieser Ansatz sehr erfolgversprechend ist, haben seine bisherigen Arbeiten bereits bewiesen: Im Tiermodell konnte er zeigen, dass geringe Mengen von Taxol – einen Wirkstoff, der auch in der Krebstherapie eingesetzt wird – das Zellskelett der Nervenzellen so stabilisiert, dass durchtrennte Nervenzellen wieder zum Wachstum angeregt werden.

Bradkes Idee, dass ausgerechnet Taxol hier helfen könnte, ging eine jahrelange Erforschung der Entwicklung von Nervenzellen voraus. In einem frühen Stadium der Entwicklung beginnt eine Nervenzelle eine Vielzahl von zellulären Fortsätzen zu produzieren. Einer dieser Fortsätze wird zum Axon und wächst schnell. Axone können im Rückenmark von Menschen bis zu einem Meter lang werden, sie leiten elektrische Nervensignale an nachstehende Zellen weiter. Alle anderen Fortsätze werden zu Dendriten – sie sind kürzer und dienen dazu, Signale von vorgeschalteten Nervenzellen zu empfangen. Schon während seiner Doktorarbeit untersuchte Bradke, wie sich die Entwicklung des Axons von dem der Dendriten unterscheidet und warum Axone weiter wachsen, während Dendriten anfänglich während der Entwicklung erstmal nicht weiterwachsen.
Eine wesentliche Rolle dabei, so zeigte Bradke, spielt das Zellskelett. In der Wachstumszone am Ende des Axons liegen so genannte Aktin-Bündel. Diese müssen flexibel genug sein, damit das Axon wachsen kann. Im Axon selbst liegen Mikrotubuli, die den langen Fortsätzen der Nervenzellen ihre Struktur geben. In der Wachstumszone müssen diese stabil genug sein, um die Aktinfilamente nach vorne zu schieben. Nur wenn Mikrotubuli stabil und Aktin-Filamente instabil genug sind, kann ein Nervenfortsatz wachsen. Bei Axonen ist dies der Fall, bei Dendriten nicht. Aber auch nach Verletzungen im Rückenmark sind Mikrotubuli in den Axonen zerbrochen und instabil – das Axon kann dementsprechend nicht mehr wachsen. Wäre es also möglich, so fragte Bradke, dass allein durch die Stabilisierung der Mikrotubuli die Wachstumsfähigkeit der Axone wieder hergestellt wird? Taxol ist eine Substanz, die Mikrotubuli stabilisiert. In der Tat konnten Bradke und seine Kollegen zeigen, dass die Gabe von geringen Mengen von Taxol das Zellskelett so beeinflusst, dass ein Nervenwachstum ermöglicht wird. "Taxol hat darüber hinaus auch noch die Eigenschaft, die Narbenbildung zu verhindern. Auch das erleichtert die Regeneration der Nervenfasern erheblich", sagt Bradke.

Noch sind diese Forschungsergebnisse weit davon entfernt, zur Anwendung zu kommen und Patienten zu helfen, sie geben aber wichtige Hinweise auf neue mögliche Ansatzpunkte. Eine direkte Beeinflussung des Zellskeletts kann das Wachstum von Nervenzellen fördern. "Unsere Forschung kann langfristig auch dazu beitragen, neurodegenerativer Erkrankungen des Gehirns wie Schlaganfall, Parkinson oder Alzheimer besser zu verstehen, denn auch hier werden Nervenzellen geschädigt und Axone verlieren ihre Kontakte zu nachgeschalteten Zellen", so Bradke.

Frank Bradke studierte an der Freien Universität Berlin und dem University College London. 1994 erhielt er den Bachelor of Science in Anatomie und Entwicklungsbiologie, 1995 das Diplom in Biochemie. Während seiner Dissertation forschte er am Europäischen Laboratorium für Molekularbiologie (EMBL), Heidelberg. Als Postdoc wechselte er 2000 an die University of California, San Francisco und Stanford und war anschließend Arbeitsgruppenleiter am Max-Planck-Institut für Neurobiologie, Martinsried. Frank Bradke habilitierte 2009 an der Ludwig Maximilians Universität München. Seit 2011 ist er ordentlicher Professor und Senior Gruppenleiter der Arbeitsgruppe Axonales Wachstum und Regeneration am DZNE in Bonn.

Kontaktinformation:
Dr. Katrin Weigmann
Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)
Presse- und Öffentlichkeitsarbeit
Email: katrin.weigmann@dzne.de
Tel: +49 (0) 228 43302 /263
Mobil: +49 (0) 173 – 5471350

Katrin Weigmann | idw
Weitere Informationen:
http://www.dzne.de/standorte/bonn-koeln-juelich/forschergruppen/bradke.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops