Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Wachstumsbremse im Rückenmark lösen

08.02.2012
Die neue Arbeitsgruppe von Prof. Frank Bradke am DZNE untersucht, wie man Nervenzellen nach einer Querschnittslähmung dazu anregen kann, sich zu regenerieren
Während Knochenbrüche, Muskelrisse oder Wunden der Haut meist von alleine heilen, ist das im Rückenmark anders. Wird das Rückenmark durchtrennt, wächst es nicht wieder zusammen – die Folge: Querschnittslähmung. Warum das so ist und wie man querschnittsgelähmten Personen dennoch helfen kann, untersucht Prof. Frank Bradke mit seiner neuen Arbeitsgruppe am Deutschen Zentrum für Neurodegenerative Erkrankungen (DZNE) in Bonn.

Nervenzellen im zentralen Nervensystem sind von einer Myelinschicht umgeben. Diese Schicht schützt die Nervenzellen, verhindert aber auch ihre Regeneration nach Verletzungen. Sie enthält eine ganze Reihe von Molekülen, die das Nachwachsen der Nervenfasern verhindern können – "vergleichbar mit Stoppschildern im Straßenverkehr", sagt Bradke. Begegnet eine Nervenfaser einem solchen Stoppschild, wächst sie nicht weiter. Weltweit arbeiten Wissenschaftler daran, diese wachstumshemmenden Moleküle zu identifizieren. Bradke aber hat einen anderen Ansatz gewählt: Mit seiner Arbeitsgruppe konzentriert er sich auf die Nervenzellen selbst. Warum halten sie sich an die Stoppschilder? Kann man die Nervenzellen dazu bringen, Stoppschilder zu ignorieren und einfach trotzdem weiter zu wachsen? "Wir versuchen sozusagen, Nervenzellen zu etwas draufgängerischeren Verkehrsteilnehmern zu machen", sagt Bradke. Dass dieser Ansatz sehr erfolgversprechend ist, haben seine bisherigen Arbeiten bereits bewiesen: Im Tiermodell konnte er zeigen, dass geringe Mengen von Taxol – einen Wirkstoff, der auch in der Krebstherapie eingesetzt wird – das Zellskelett der Nervenzellen so stabilisiert, dass durchtrennte Nervenzellen wieder zum Wachstum angeregt werden.

Bradkes Idee, dass ausgerechnet Taxol hier helfen könnte, ging eine jahrelange Erforschung der Entwicklung von Nervenzellen voraus. In einem frühen Stadium der Entwicklung beginnt eine Nervenzelle eine Vielzahl von zellulären Fortsätzen zu produzieren. Einer dieser Fortsätze wird zum Axon und wächst schnell. Axone können im Rückenmark von Menschen bis zu einem Meter lang werden, sie leiten elektrische Nervensignale an nachstehende Zellen weiter. Alle anderen Fortsätze werden zu Dendriten – sie sind kürzer und dienen dazu, Signale von vorgeschalteten Nervenzellen zu empfangen. Schon während seiner Doktorarbeit untersuchte Bradke, wie sich die Entwicklung des Axons von dem der Dendriten unterscheidet und warum Axone weiter wachsen, während Dendriten anfänglich während der Entwicklung erstmal nicht weiterwachsen.
Eine wesentliche Rolle dabei, so zeigte Bradke, spielt das Zellskelett. In der Wachstumszone am Ende des Axons liegen so genannte Aktin-Bündel. Diese müssen flexibel genug sein, damit das Axon wachsen kann. Im Axon selbst liegen Mikrotubuli, die den langen Fortsätzen der Nervenzellen ihre Struktur geben. In der Wachstumszone müssen diese stabil genug sein, um die Aktinfilamente nach vorne zu schieben. Nur wenn Mikrotubuli stabil und Aktin-Filamente instabil genug sind, kann ein Nervenfortsatz wachsen. Bei Axonen ist dies der Fall, bei Dendriten nicht. Aber auch nach Verletzungen im Rückenmark sind Mikrotubuli in den Axonen zerbrochen und instabil – das Axon kann dementsprechend nicht mehr wachsen. Wäre es also möglich, so fragte Bradke, dass allein durch die Stabilisierung der Mikrotubuli die Wachstumsfähigkeit der Axone wieder hergestellt wird? Taxol ist eine Substanz, die Mikrotubuli stabilisiert. In der Tat konnten Bradke und seine Kollegen zeigen, dass die Gabe von geringen Mengen von Taxol das Zellskelett so beeinflusst, dass ein Nervenwachstum ermöglicht wird. "Taxol hat darüber hinaus auch noch die Eigenschaft, die Narbenbildung zu verhindern. Auch das erleichtert die Regeneration der Nervenfasern erheblich", sagt Bradke.

Noch sind diese Forschungsergebnisse weit davon entfernt, zur Anwendung zu kommen und Patienten zu helfen, sie geben aber wichtige Hinweise auf neue mögliche Ansatzpunkte. Eine direkte Beeinflussung des Zellskeletts kann das Wachstum von Nervenzellen fördern. "Unsere Forschung kann langfristig auch dazu beitragen, neurodegenerativer Erkrankungen des Gehirns wie Schlaganfall, Parkinson oder Alzheimer besser zu verstehen, denn auch hier werden Nervenzellen geschädigt und Axone verlieren ihre Kontakte zu nachgeschalteten Zellen", so Bradke.

Frank Bradke studierte an der Freien Universität Berlin und dem University College London. 1994 erhielt er den Bachelor of Science in Anatomie und Entwicklungsbiologie, 1995 das Diplom in Biochemie. Während seiner Dissertation forschte er am Europäischen Laboratorium für Molekularbiologie (EMBL), Heidelberg. Als Postdoc wechselte er 2000 an die University of California, San Francisco und Stanford und war anschließend Arbeitsgruppenleiter am Max-Planck-Institut für Neurobiologie, Martinsried. Frank Bradke habilitierte 2009 an der Ludwig Maximilians Universität München. Seit 2011 ist er ordentlicher Professor und Senior Gruppenleiter der Arbeitsgruppe Axonales Wachstum und Regeneration am DZNE in Bonn.

Kontaktinformation:
Dr. Katrin Weigmann
Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)
Presse- und Öffentlichkeitsarbeit
Email: katrin.weigmann@dzne.de
Tel: +49 (0) 228 43302 /263
Mobil: +49 (0) 173 – 5471350

Katrin Weigmann | idw
Weitere Informationen:
http://www.dzne.de/standorte/bonn-koeln-juelich/forschergruppen/bradke.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Basis für neue medikamentöse Therapie bei Demenz
27.07.2017 | Medizinische Hochschule Hannover

nachricht Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse
27.07.2017 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie