Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Wachstumsbremse im Rückenmark lösen

08.02.2012
Die neue Arbeitsgruppe von Prof. Frank Bradke am DZNE untersucht, wie man Nervenzellen nach einer Querschnittslähmung dazu anregen kann, sich zu regenerieren
Während Knochenbrüche, Muskelrisse oder Wunden der Haut meist von alleine heilen, ist das im Rückenmark anders. Wird das Rückenmark durchtrennt, wächst es nicht wieder zusammen – die Folge: Querschnittslähmung. Warum das so ist und wie man querschnittsgelähmten Personen dennoch helfen kann, untersucht Prof. Frank Bradke mit seiner neuen Arbeitsgruppe am Deutschen Zentrum für Neurodegenerative Erkrankungen (DZNE) in Bonn.

Nervenzellen im zentralen Nervensystem sind von einer Myelinschicht umgeben. Diese Schicht schützt die Nervenzellen, verhindert aber auch ihre Regeneration nach Verletzungen. Sie enthält eine ganze Reihe von Molekülen, die das Nachwachsen der Nervenfasern verhindern können – "vergleichbar mit Stoppschildern im Straßenverkehr", sagt Bradke. Begegnet eine Nervenfaser einem solchen Stoppschild, wächst sie nicht weiter. Weltweit arbeiten Wissenschaftler daran, diese wachstumshemmenden Moleküle zu identifizieren. Bradke aber hat einen anderen Ansatz gewählt: Mit seiner Arbeitsgruppe konzentriert er sich auf die Nervenzellen selbst. Warum halten sie sich an die Stoppschilder? Kann man die Nervenzellen dazu bringen, Stoppschilder zu ignorieren und einfach trotzdem weiter zu wachsen? "Wir versuchen sozusagen, Nervenzellen zu etwas draufgängerischeren Verkehrsteilnehmern zu machen", sagt Bradke. Dass dieser Ansatz sehr erfolgversprechend ist, haben seine bisherigen Arbeiten bereits bewiesen: Im Tiermodell konnte er zeigen, dass geringe Mengen von Taxol – einen Wirkstoff, der auch in der Krebstherapie eingesetzt wird – das Zellskelett der Nervenzellen so stabilisiert, dass durchtrennte Nervenzellen wieder zum Wachstum angeregt werden.

Bradkes Idee, dass ausgerechnet Taxol hier helfen könnte, ging eine jahrelange Erforschung der Entwicklung von Nervenzellen voraus. In einem frühen Stadium der Entwicklung beginnt eine Nervenzelle eine Vielzahl von zellulären Fortsätzen zu produzieren. Einer dieser Fortsätze wird zum Axon und wächst schnell. Axone können im Rückenmark von Menschen bis zu einem Meter lang werden, sie leiten elektrische Nervensignale an nachstehende Zellen weiter. Alle anderen Fortsätze werden zu Dendriten – sie sind kürzer und dienen dazu, Signale von vorgeschalteten Nervenzellen zu empfangen. Schon während seiner Doktorarbeit untersuchte Bradke, wie sich die Entwicklung des Axons von dem der Dendriten unterscheidet und warum Axone weiter wachsen, während Dendriten anfänglich während der Entwicklung erstmal nicht weiterwachsen.
Eine wesentliche Rolle dabei, so zeigte Bradke, spielt das Zellskelett. In der Wachstumszone am Ende des Axons liegen so genannte Aktin-Bündel. Diese müssen flexibel genug sein, damit das Axon wachsen kann. Im Axon selbst liegen Mikrotubuli, die den langen Fortsätzen der Nervenzellen ihre Struktur geben. In der Wachstumszone müssen diese stabil genug sein, um die Aktinfilamente nach vorne zu schieben. Nur wenn Mikrotubuli stabil und Aktin-Filamente instabil genug sind, kann ein Nervenfortsatz wachsen. Bei Axonen ist dies der Fall, bei Dendriten nicht. Aber auch nach Verletzungen im Rückenmark sind Mikrotubuli in den Axonen zerbrochen und instabil – das Axon kann dementsprechend nicht mehr wachsen. Wäre es also möglich, so fragte Bradke, dass allein durch die Stabilisierung der Mikrotubuli die Wachstumsfähigkeit der Axone wieder hergestellt wird? Taxol ist eine Substanz, die Mikrotubuli stabilisiert. In der Tat konnten Bradke und seine Kollegen zeigen, dass die Gabe von geringen Mengen von Taxol das Zellskelett so beeinflusst, dass ein Nervenwachstum ermöglicht wird. "Taxol hat darüber hinaus auch noch die Eigenschaft, die Narbenbildung zu verhindern. Auch das erleichtert die Regeneration der Nervenfasern erheblich", sagt Bradke.

Noch sind diese Forschungsergebnisse weit davon entfernt, zur Anwendung zu kommen und Patienten zu helfen, sie geben aber wichtige Hinweise auf neue mögliche Ansatzpunkte. Eine direkte Beeinflussung des Zellskeletts kann das Wachstum von Nervenzellen fördern. "Unsere Forschung kann langfristig auch dazu beitragen, neurodegenerativer Erkrankungen des Gehirns wie Schlaganfall, Parkinson oder Alzheimer besser zu verstehen, denn auch hier werden Nervenzellen geschädigt und Axone verlieren ihre Kontakte zu nachgeschalteten Zellen", so Bradke.

Frank Bradke studierte an der Freien Universität Berlin und dem University College London. 1994 erhielt er den Bachelor of Science in Anatomie und Entwicklungsbiologie, 1995 das Diplom in Biochemie. Während seiner Dissertation forschte er am Europäischen Laboratorium für Molekularbiologie (EMBL), Heidelberg. Als Postdoc wechselte er 2000 an die University of California, San Francisco und Stanford und war anschließend Arbeitsgruppenleiter am Max-Planck-Institut für Neurobiologie, Martinsried. Frank Bradke habilitierte 2009 an der Ludwig Maximilians Universität München. Seit 2011 ist er ordentlicher Professor und Senior Gruppenleiter der Arbeitsgruppe Axonales Wachstum und Regeneration am DZNE in Bonn.

Kontaktinformation:
Dr. Katrin Weigmann
Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)
Presse- und Öffentlichkeitsarbeit
Email: katrin.weigmann@dzne.de
Tel: +49 (0) 228 43302 /263
Mobil: +49 (0) 173 – 5471350

Katrin Weigmann | idw
Weitere Informationen:
http://www.dzne.de/standorte/bonn-koeln-juelich/forschergruppen/bradke.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Studie entschlüsselt neue Diabetes-Gene
22.01.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft
22.01.2018 | Humboldt-Universität zu Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics