Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Wachstum des Herzens bremsen

12.03.2013
Wenn das Herz zu sehr belastet wird, wächst es. Das kann am Ende zu einer weit verbreiteten Krankheit führen, der chronischen Herzschwäche. Wie es auf molekularer Ebene dazu kommt, erforscht Kristina Lorenz, neue Professorin an der Uni Würzburg.

Das Herz eines Profisportlers ist in der Regel größer als bei einem untrainierten gesunden Menschen. Denn das Herz wächst, wenn es unter erhöhter Belastung steht. Das passiert allerdings auch dann, wenn die Belastung durch eine Krankheit verursacht wird, zum Beispiel durch chronisch erhöhten Blutdruck.

„Mit dem Wachstum versucht das Herz, seine Leistung auch bei höherer Belastung konstant zu halten“, erklärt Kristina Lorenz, Professorin für Molekulare Pharmakologie an der Uni Würzburg. Bis zu einem gewissen Grad gehe diese Strategie auf. Wächst das Herz aber zu stark, dann sterben Herzmuskelzellen ab, das Gewebe vernarbt und wird dauerhaft geschwächt – eine chronische Herzschwäche hat sich entwickelt. „Um dem vorzubeugen, ist es wichtig, ein übermäßiges Wachstum des Herzens zu verhindern“, sagt Lorenz. „Das geht am besten, indem man in die ursächlichen Mechanismen eingreift.“

Zwei Enzyme von Bedeutung

Diese Mechanismen erforscht die neue Professorin. „Wir haben unter anderem herausgefunden, dass die Enzyme ERK1 und ERK2 in den Herzmuskelzellen für die Entstehung des übermäßigen Wachstums von besonderer Bedeutung sind, und wir haben auch einen neuen Steuermechanismus dafür entdeckt.“ Für diese Erkenntnis bekam Lorenz 2010 den renommierten Galenus-von-Pergamon-Preis verliehen.

Derzeit ist das Team von Lorenz dabei herauszufinden, wie man den Mechanismus stoppen kann, über den die beiden Enzyme das Herzwachstum stimulieren. Gelingt das, so eröffnen sich neue Perspektiven für die Vorbeugung und Behandlung des krankhaften Herzwachstums.

Kristina Lorenz befasst sich nicht nur mit dem Herzen. Die Enzyme ERK1 und ERK2 spielen beim Krebswachstum, bei der Gefäßverkalkung und anderen Krankheiten ebenfalls eine Rolle. Darum erforscht die Wissenschaftlerin auch, wie die Enzyme bei diesen Erkrankungen fehlgesteuert werden.

Werdegang von Kristina Lorenz

Kristina Lorenz, 1972 in Kassel geboren, hat Pharmazie an der Uni Würzburg studiert. Nach der Approbation als Apothekerin begann sie 1999 eine Doktorarbeit bei Professor Martin Lohse in der Würzburger Pharmakologie und schloss sie 2004 mit der Promotion ab. Danach war sie wissenschaftliche Mitarbeiterin am Institut für Pharmakologie und Toxikologie.

Nach einem Forschungsaufenthalt an der Universität in Rochester (USA) kehrte Lorenz 2009 an die Uni Würzburg zurück. Hier leitete sie wissenschaftliche Projekte im Sonderforschungsbereich 688, am Deutschen Zentrum für Herzinsuffizienz und am Rudolf-Virchow-Zentrum für experimentelle Biomedizin.

2012 wechselte Lorenz dann an die Technische Universität Dresden. Dort war sie wissenschaftliche Mitarbeiterin am Institut für Pharmakologie und Toxikologie sowie Stellvertreterin von Institutsleiterin Ursula Ravens. Im Januar 2013 folgte sie einem Ruf zurück an die Universität Würzburg, wo sie seitdem eine Professur für Molekulare Pharmakologie innehat.

Kontakt

Prof. Dr. Kristina Lorenz, Institut für Pharmakologie und Toxikologie der Universität Würzburg, T (0931) 201-48533, lorenz@toxi.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik