Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie wachsen Pflanzen zum Licht?

27.05.2013
Wissenschaftler klären Mechanismus der lichtabhängigen Pflanzenbewegung

Pflanzen haben mehrere Strategien entwickelt, um mit ihren Blättern möglichst viel Sonnenlicht einzufangen. Wie sich auch bei Topfpflanzen am Wohnzimmerfenster beobachten lässt, wachsen Pflanzen immer in Richtung des einfallenden Lichts. So können sie ihren Energiebedarf durch Photosynthese optimal decken. Die treibende Kraft hinter dieser Bewegung ist das Pflanzenhormon Auxin – das konnte jetzt ein internationales Forschungsteam eindeutig klären.


Pflanzen wachsen zum Licht – verantwortlich dafür ist das Pflanzenhormon Auxin. (Foto: C. Schwechheimer/TUM)

Das Wachstum der Pflanzen zum Licht ist besonders zu Beginn eines Pflanzenlebens wichtig. Viele Samen keimen im Boden aus und ernähren sich im Dunkeln von ihren begrenzten Stärke- und Fettreserven. Durch massives Längenwachstum entgegen der Schwerkraft, die als erste Orientierungshilfe dient, streben die Keimlinge an die Oberfläche. Mit Hilfe hochsensibler Lichtdetektor-Proteine finden sie den kürzesten Weg zum Sonnenlicht – und können sich dafür auch in die Richtung des Lichts krümmen.

„Auch erwachsene Pflanzen krümmen sich in die Richtung des stärksten Lichteinfalls; und sie bewerkstelligen das, indem sich die Zellen des Stamms auf der dem Licht abgewandten Seite verstärkt strecken. Diese Form des lichtgerichteten Wachstums nennt man Phototropismus“, erklärt Prof. Claus Schwechheimer vom Lehrstuhl für Systembiologie der Pflanzen an der Technischen Universität München (TUM).

Schleuser bringen Pflanzenhormon zum Ziel

Verantwortlich für die Zellstreckung ist das Auxin. Das Phytohormon wird in Zellen an der Sprossspitze gebildet und von dort aus von Zelle zu Zelle weitergeleitet. So gelangt es über viele Zwischenstationen zu seinem Bestimmungsort. „Export- und Importproteine schleusen das Auxin aus der Zelle heraus, und dann vom Zellenzwischenraum wieder in die nächste Zelle, und so weiter – bis es letztlich an seinem Ziel ankommt“, sagt Schwechheimer.

Die wichtigsten Proteine in diesem Prozess sind die „PINs“ genannten Exportproteine, die dem Auxinfluss die Richtung vorgeben. Wie das Team um Schwechheimer zeigen konnte, arbeiten diese PINs nicht alleine: „Sie benötigen das Signal der Proteinkinase D6PK“, führt Schwechheimer aus. „Das Kinase-Enzym schaltet die PINs durch die Übertragung von Phosphatgruppen an – so dass sie als Auxin-Schleuser aktiv werden.“

Welche Rolle spielt das Auxin?

Die Bewegungen der Pflanzen hat der große Naturforscher Charles Darwin 1880 in seinem Standardwerk „The power of movement in plants“ erstmals ausführlich beschrieben. Dass bei der Licht-gesteuerten Krümmung das Pflanzenhormon Auxin eine Rolle spielen könnte, war bereits 1937 vom niederländische Forscher Frits Went im Cholodny-Went Modell vorgeschlagen worden.

Obwohl danach viele Beobachtungen dieses Modell unterstützten, fehlte bisher der Beweis dafür, dass das Auxin auch wirklich an diesem Prozess beteiligt ist. Warum, erklärt Prof. Christian Fankhauser von der UNIL (Université de Lausanne) in der Schweiz: „Alle bislang verfügbaren Pflanzen mit einem bekannten Defekt im Auxintransport zeigten einen normalen Phototropismus. Warum sollte also der Auxintransport für den Phototropismus wichtig sein?“

Modell der Auxin-gesteuerten Krümmung bestätigt

Die Antwort auf diese Frage fanden die TUM-Forscher in Zusammenarbeit mit ihren Kollegen an der UNIL. Den Schweizer Forschern gelang es, in einer Pflanze gleichzeitig mehrere PIN-Transporter auszuschalten; die TUM-Wissenschaftler konnten gleichzeitig die Funktion der D6PK-Proteine aufklären.

Das Ergebnis: Wenn mehrere der PIN- und Kinase-Komponenten fehlten, waren die Pflanzen in ihrem Wachstum komplett unempfänglich gegenüber den Lichtsignalen, die den Phototropismus auslösen. Der Auxin-Transport in diesen Mutanten war stark beeinträchtigt: Unabhängig vom Lichteinfall wuchsen sie entgegen der Schwerkraft nach oben. Damit konnten die Wissenschaftler erstmals eindeutig belegen, dass das Hormon Auxin der Stoff ist, der den Pflanzen die Kraft zum Phototropismus gibt.

Publikation:
Willige, B.C., Ahlers, S., Zourelidou, M., Barbosa, I.C.R., Demarsy, E., Trevisan, M., Davis, P.A., Roelfsema, M.R.G., Hangarter, R., Fankhauser, C., and Schwechheimer, C. (2013). D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis; Plant Cell (http://www.plantcell.org/lookup/doi/10.1105/tpc.113.111484)
Pressemitteilung und Bildmaterial im Web:
http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/30854/
Weitere Informationen:
Pressemitteilung: Wege des Wachstums - Neues Protein für Hormontransport bei Pflanzen entdeckt: http://www.wzw.tum.de/index.php?id=185&tx_ttnews[tt_news]=126
Kontakt:
Prof. Dr. Claus Schwechheimer
Technische Universität München
Lehrstuhl für Systembiologie der Pflanzen
T: +49.8161.712880
E: claus.schwechheimer@wzw.tum.de
W: http://www.wzw.tum.de/sysbiol/
Die Technische Universität München (TUM) ist mit rund 500 Professorinnen und Professoren, 9.000 Mitarbeiterinnen und Mitarbeitern und 32.000 Studierenden eine der führenden technischen Universitäten Europas. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 und 2012 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. In nationalen und internationalen Vergleichsstudien rangiert die TUM jeweils unter den besten Universitäten Deutschlands. Die TUM ist dem Leitbild einer forschungsstarken, unternehmerischen Universität verpflichtet. Weltweit ist die TUM mit einem Campus in Singapur sowie Niederlassungen in Peking (China), Brüssel (Belgien), Kairo (Ägypten), Mumbai (Indien) und São Paulo (Brasilien) vertreten.

Prof. Dr. Claus Schwechheimer | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften