Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie wachsen Pflanzen zum Licht?

27.05.2013
Wissenschaftler klären Mechanismus der lichtabhängigen Pflanzenbewegung

Pflanzen haben mehrere Strategien entwickelt, um mit ihren Blättern möglichst viel Sonnenlicht einzufangen. Wie sich auch bei Topfpflanzen am Wohnzimmerfenster beobachten lässt, wachsen Pflanzen immer in Richtung des einfallenden Lichts. So können sie ihren Energiebedarf durch Photosynthese optimal decken. Die treibende Kraft hinter dieser Bewegung ist das Pflanzenhormon Auxin – das konnte jetzt ein internationales Forschungsteam eindeutig klären.


Pflanzen wachsen zum Licht – verantwortlich dafür ist das Pflanzenhormon Auxin. (Foto: C. Schwechheimer/TUM)

Das Wachstum der Pflanzen zum Licht ist besonders zu Beginn eines Pflanzenlebens wichtig. Viele Samen keimen im Boden aus und ernähren sich im Dunkeln von ihren begrenzten Stärke- und Fettreserven. Durch massives Längenwachstum entgegen der Schwerkraft, die als erste Orientierungshilfe dient, streben die Keimlinge an die Oberfläche. Mit Hilfe hochsensibler Lichtdetektor-Proteine finden sie den kürzesten Weg zum Sonnenlicht – und können sich dafür auch in die Richtung des Lichts krümmen.

„Auch erwachsene Pflanzen krümmen sich in die Richtung des stärksten Lichteinfalls; und sie bewerkstelligen das, indem sich die Zellen des Stamms auf der dem Licht abgewandten Seite verstärkt strecken. Diese Form des lichtgerichteten Wachstums nennt man Phototropismus“, erklärt Prof. Claus Schwechheimer vom Lehrstuhl für Systembiologie der Pflanzen an der Technischen Universität München (TUM).

Schleuser bringen Pflanzenhormon zum Ziel

Verantwortlich für die Zellstreckung ist das Auxin. Das Phytohormon wird in Zellen an der Sprossspitze gebildet und von dort aus von Zelle zu Zelle weitergeleitet. So gelangt es über viele Zwischenstationen zu seinem Bestimmungsort. „Export- und Importproteine schleusen das Auxin aus der Zelle heraus, und dann vom Zellenzwischenraum wieder in die nächste Zelle, und so weiter – bis es letztlich an seinem Ziel ankommt“, sagt Schwechheimer.

Die wichtigsten Proteine in diesem Prozess sind die „PINs“ genannten Exportproteine, die dem Auxinfluss die Richtung vorgeben. Wie das Team um Schwechheimer zeigen konnte, arbeiten diese PINs nicht alleine: „Sie benötigen das Signal der Proteinkinase D6PK“, führt Schwechheimer aus. „Das Kinase-Enzym schaltet die PINs durch die Übertragung von Phosphatgruppen an – so dass sie als Auxin-Schleuser aktiv werden.“

Welche Rolle spielt das Auxin?

Die Bewegungen der Pflanzen hat der große Naturforscher Charles Darwin 1880 in seinem Standardwerk „The power of movement in plants“ erstmals ausführlich beschrieben. Dass bei der Licht-gesteuerten Krümmung das Pflanzenhormon Auxin eine Rolle spielen könnte, war bereits 1937 vom niederländische Forscher Frits Went im Cholodny-Went Modell vorgeschlagen worden.

Obwohl danach viele Beobachtungen dieses Modell unterstützten, fehlte bisher der Beweis dafür, dass das Auxin auch wirklich an diesem Prozess beteiligt ist. Warum, erklärt Prof. Christian Fankhauser von der UNIL (Université de Lausanne) in der Schweiz: „Alle bislang verfügbaren Pflanzen mit einem bekannten Defekt im Auxintransport zeigten einen normalen Phototropismus. Warum sollte also der Auxintransport für den Phototropismus wichtig sein?“

Modell der Auxin-gesteuerten Krümmung bestätigt

Die Antwort auf diese Frage fanden die TUM-Forscher in Zusammenarbeit mit ihren Kollegen an der UNIL. Den Schweizer Forschern gelang es, in einer Pflanze gleichzeitig mehrere PIN-Transporter auszuschalten; die TUM-Wissenschaftler konnten gleichzeitig die Funktion der D6PK-Proteine aufklären.

Das Ergebnis: Wenn mehrere der PIN- und Kinase-Komponenten fehlten, waren die Pflanzen in ihrem Wachstum komplett unempfänglich gegenüber den Lichtsignalen, die den Phototropismus auslösen. Der Auxin-Transport in diesen Mutanten war stark beeinträchtigt: Unabhängig vom Lichteinfall wuchsen sie entgegen der Schwerkraft nach oben. Damit konnten die Wissenschaftler erstmals eindeutig belegen, dass das Hormon Auxin der Stoff ist, der den Pflanzen die Kraft zum Phototropismus gibt.

Publikation:
Willige, B.C., Ahlers, S., Zourelidou, M., Barbosa, I.C.R., Demarsy, E., Trevisan, M., Davis, P.A., Roelfsema, M.R.G., Hangarter, R., Fankhauser, C., and Schwechheimer, C. (2013). D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis; Plant Cell (http://www.plantcell.org/lookup/doi/10.1105/tpc.113.111484)
Pressemitteilung und Bildmaterial im Web:
http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/30854/
Weitere Informationen:
Pressemitteilung: Wege des Wachstums - Neues Protein für Hormontransport bei Pflanzen entdeckt: http://www.wzw.tum.de/index.php?id=185&tx_ttnews[tt_news]=126
Kontakt:
Prof. Dr. Claus Schwechheimer
Technische Universität München
Lehrstuhl für Systembiologie der Pflanzen
T: +49.8161.712880
E: claus.schwechheimer@wzw.tum.de
W: http://www.wzw.tum.de/sysbiol/
Die Technische Universität München (TUM) ist mit rund 500 Professorinnen und Professoren, 9.000 Mitarbeiterinnen und Mitarbeitern und 32.000 Studierenden eine der führenden technischen Universitäten Europas. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 und 2012 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. In nationalen und internationalen Vergleichsstudien rangiert die TUM jeweils unter den besten Universitäten Deutschlands. Die TUM ist dem Leitbild einer forschungsstarken, unternehmerischen Universität verpflichtet. Weltweit ist die TUM mit einem Campus in Singapur sowie Niederlassungen in Peking (China), Brüssel (Belgien), Kairo (Ägypten), Mumbai (Indien) und São Paulo (Brasilien) vertreten.

Prof. Dr. Claus Schwechheimer | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops