Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie wachsen unsere Finger?

27.07.2010
Berliner Forscher entschlüsseln die Genetik des Fingerwachstums

Die menschliche Hand ist ein Kunstwerk. Wohl jeder hat schon einmal die Virtuosität eines Klavierspielers bewundert, dessen Finger sich mit fast unglaublicher Geschicklichkeit und Präzision über die Tasten bewegen. Die außerordentlichen mechanischen Leistungen menschlicher Hände beruhen auf der individuellen Gestalt und Funktionsfähigkeit ihrer Finger.

Wie die korrekte Entwicklung der Hand und das Wachstum der einzelnen Finger gesteuert werden, war bislang jedoch unbekannt. In der renommierten Fachzeitschrift „Proceedings of the National Academy of Sciences U.S.A.“ (PNAS) beschreiben jetzt Wissenschaftler um Sigmar Stricker und Stefan Mundlos vom Berliner Max-Planck-Institut für molekulare Genetik, wie das Längenwachstum der Finger durch ein fein abgestimmtes Netzwerk von unterschiedlichen Signalwegen gesteuert wird [Witte, F., et al., PNAS, July 26, 2010, doi: 10.1073/pnas.1009314107].

Um normale Entwicklungsprozesse im menschlichen Körper zu verstehen, untersuchen Wissenschaftler häufig Krankheiten, bei denen genau diese Prozesse gestört sind. „Bisher weiss niemand, wie bei Säugetieren, also auch beim Menschen, die Finger genau entstehen und wie ihr Wachstum gesteuert wird“, beschreibt Sigmar Stricker, Wissenschaftler am Max-Planck-Institut für molekulare Genetik, den Ausgangspunkt seiner Arbeit. Gemeinsam mit Kollegen vom Institut für Medizinische Genetik der Charité – Universitätsmedizin Berlin und weiteren Partnern untersuchte er daher eine Reihe von Erkrankungen, die alle mit einer Verkürzung der einzelnen Fingerglieder einhergehen. Diese sogenannten Brachydaktylien können durch Mutationen an verschiedenen Genen verursacht werden.

Die Forscher untersuchten zwei Gruppen von Mäusen, bei denen jeweils ein Gen so verändert war, dass es der Mutation bei den menschlichen Brachydaktylien A1 bzw. B1 entsprach. Die Wissenschaftler stellten fest, dass bei beiden Mäusegruppen die Aktivität des „Knochenmorphogenetischen Protein“ (bone morphogenetic protein, BMP) -Signalweges betroffen war. BMPs sind eine Gruppe von Signalproteinen, die von einigen Zellen eines Organismus ausgeschüttet werden, um direkt benachbarte Zellen zu beeinflussen. Sie fungieren vor allem als Wachstumsfaktoren, dies ist jedoch nicht ihre einzige Funktion. „Bei allen Tieren fanden wir ein Signalzentrum direkt vor dem sich neu bildenden Skelettelement bzw. Fingerglied, welches eine besonders hohe Aktivität des BMP-Signalweges aufwies,“ so Stricker. „Dieses Signalzentrum ist dafür verantwortlich, unspezifische embryonale Bindegewebszellen (Mesenchymzellen) zur Umwandlung in Knorpelzellen anzuregen. Die Knorpelzellen entwickeln sich im nächsten Schritt zu Knochenzellen, das bedeutet, der Finger wächst in die Länge.“

Durch genetische und molekulare Experimente konnten die Wissenschaftler zeigen, dass das Signalzentrum durch eine Reihe weiterer Signalmechanismen (IHH, ROR2, WNT) gesteuert wird. Ihre Arbeit beschreibt zum ersten Mal den genetischen und molekularen Mechanismus des Fingerwachstums bei Säugetieren und beleuchtet dessen Rolle bei der Entstehung von menschlichen Brachydaktylien.

Originalveröffentlichung:
Witte, F., Chan, C., Economides, A.N., Mundlos, S. & Stricker, S. (2010). ROR2 and Indian Hedgehog regulate digit outgrowth mediated by the phalanx-forming region. PNAS, July 26, 2010, doi: 10.1073/pnas.10093 14107
Kontakt:
Dr. Sigmar Stricker
Max-Planck-Institut
für molekulare Genetik
Tel.: +49 30 8413-1267
Fax: +49 30 8413-1385
Email: strick_s@molgen.mpg.de

Dr. Patricia Marquardt | Max-Planck-Institut
Weitere Informationen:
http://www.molgen.mpg.de/research/mundlos/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics