Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vorteil: Jugend. Im Alter nimmt Regenerationsfähigkeit ab

01.07.2015

Regenerationsprozesse ermöglichen es, dass Wunden heilen und verletzte oder fehlende Organteile aus dem übrigen Gewebe nachwachsen können. Während Plattwürmer, Salamander und Fische in der Lage sind, defekte Körperteile nahezu vollständig wieder nachzubilden, ist die Regenerationsfähigkeit beim Menschen eingeschränkt und verringert sich mit zunehmendem Alter.

Forscher des Leibniz-Instituts für Altersforschung in Jena haben nun in einer Studie mit dem Türkisen Prachtgrundkärpfling (N. furzeri) untersucht, welchen Einfluss das Alter auf die Regenerationsfähigkeit der Schwanzflosse des Fisches hat. Es zeigte sich, dass - wie beim Menschen - die Fähigkeit zur Regeneration im Alter stark abnimmt.


Der Türkise Prachtgrundkärpfling (Nothobranchius furzeri) ist in der Lage, verletzte Schwanzflossen zu regenerieren. Die Regenerationsfähigkeit nimmt mit zunehmendem Alter jedoch ab.

[Foto: Nils Hartmann / FLI]

Viele Tiere sind in der Lage, nach Verletzung oder Verlust voll funktionsfähige, identisch geformte und sogar sehr komplexe Körperteile nachwachsen zu lassen. Plattwürmer können zum Beispiel einen kompletten Organismus aus einem Stück Schwanz oder aus einem Stück Kopf generieren; Zebrafische erneuern ihre Schwanzflossen und Wassermolchen wachsen abgetrennte Beine binnen weniger Monate vollständig nach. Dieser Prozess wird als Regeneration bezeichnet.

Von solchen Selbstheilungskräften können wir Menschen nur träumen: nur wenige Organe und Gewebe in unserem Körper sind in der Lage, sich fortlaufend zu regenerieren, wie z.B. die Darmschleimhaut, das Blut, der Skelettmuskel, die Leber und die Haut. Mit zunehmendem Alter lässt diese Fähigkeit nach. Warum das so ist und welche Prozesse dafür verantwortlich sind, ist Gegenstand der aktuellen Forschung.

Wissenschaftler des Jenaer Leibniz-Institutes für Altersforschung – Fritz-Lipmann-Institut (FLI) haben nun am Tiermodell Nothobranchius furzeri (Türkiser Prachtgrundkärpfling) erstmals über den gesamten Bereich der Lebensspanne hinweg untersucht, welchen Einfluss das Alter auf die Regenerationsfähigkeit der Schwanzflosse hat und welche Zellen dafür verantwortlich sind. Die Forschungsergebnisse wurden jetzt in dem Fachjournal „Aging Cell” veröffentlicht.

„Ein beliebtes Modell zur Untersuchung von Regenerationsprozessen ist die Schwanzflosse von Knochenfischen“, berichtet Prof. Dr. Christoph Englert, Forschungsgruppenleiter am FLI. „Für unsere Studien verwendeten wir daher den Türkisen Prachtgrundkärpfling (N. furzeri), das kurzlebigste Wirbeltier, das im Labor gehalten werden kann und das dem FLI als neues Tiermodell für die biomedizinische Altersforschung dient“. Die Lebensspanne des ostafrikanischen Fisches variiert je nach Fundort und Dauer der Regenzeit zwischen 4 bis 14 Monaten. Untersucht wurden vier verschiedene Gruppen von Fischmännchen der langlebigeren Stämme im Alter von 8, 20, 36 und 50-60 Wochen.

Regeneration im Alter

„Mit Zunahme des Alters stellten wir einen kontinuierlichen Rückgang der Regenerationsfähigkeit fest“, erklärt Dr. Nils Hartmann, wissenschaftlicher Mitarbeiter in der Arbeitsgruppe Englert. „Während die 8-Wochen alten Jungfische innerhalb von nur vier Wochen ihre Schwanzflosse nahezu vollständig regenerieren konnten, gelang den sehr alten Fischen nur, die Hälfte ihrer ursprünglichen Schwanzgröße wiederherzustellen“. Dieser Unterschied der Wachstumsrate zwischen den sehr jungen und sehr alten Fischen ist bereits nach 3 Tagen signifikant ausgeprägt. „Das unterstreicht, dass die jungen Fische bei der Regeneration klar im Vorteil sind und die älteren Exemplare diesen zeitlichen Verlust auch nicht mehr aufholen können“.

Von Fischen lernen

Darüber hinaus konnte im Flossengewebe der jungen Fische ein hoher Anteil an sich teilenden (proliferierenden) Zellen nachgewiesen werden, während im Gewebe der alten Fische mehr absterbende (apoptotische) Zellen zu finden waren. „Das deutet darauf hin, dass der altersbedingte Unterschied in der regenerativen Fähigkeit sich aus der höheren Anzahl von proliferierenden Zellen und der erhöhten Zellteilung ergibt“.

Diese neuen Erkenntnisse führen zu einem besseren Verständnis der Vorgänge während der Regeneration bei Wirbeltieren und könnten zur Aufklärung der Frage beitragen, warum Menschen nur bedingt regenerationsfähig sind. „Denn obwohl Schwanzflossen auf den ersten Blick wenig mit uns Menschen zu tun haben, befinden sich doch alle relevanten Zelltypen in ihr, die auch für uns Menschen von Bedeutung sind: von Knochen-, Nerven-, Muskel- und Hautzellen bis hin zum Bindegewebe“.

„Noch stehen wir jedoch am Anfang unserer Forschung, aber wir haben mit der Etablierung dieses Regenerationsmodells nun die Möglichkeit, in Zukunft mehr über die Zellen und Faktoren zu lernen, die an der Altersabhängigkeit der Regeneration beteiligt sind, denn letztlich wollen wir die Regenerationsfähigkeit des Menschen verbessern“, so die Jenaer Wissenschaftler. Dafür scheint der Türkise Prachtgrundkärpfling ein gutes Modell zu sein.

Publikation
Wendler S, Hartmann N, Hoppe B, Englert C. Age-dependent decline in fin regenerative capacity in the short-lived fish Nothobranchius furzeri. Aging Cell 2015. doi: 10.1111/acel.12367.

Kontakt
Dr. Kerstin Wagner
Leibniz-Institut für Altersforschung – Fritz-Lipmann-Institut (FLI)
Beutenbergstr. 11, 07745 Jena
Tel.: 03641-656378, Fax: 03641-656351, E-Mail: presse@fli-leibniz.de


Hintergrundinfo

Das Leibniz-Institut für Altersforschung – Fritz-Lipmann-Institut (FLI) in Jena widmet sich seit 2004 der biomedizinischen Alternsforschung. Über 330 Mitarbeiter aus 30 Nationen forschen zu molekularen Mechanismen von Alternsprozessen und alternsbedingten Krankheiten. Näheres unter http://www.fli-leibniz.de.

Die Leibniz-Gemeinschaft verbindet 89 selbständige Forschungseinrichtungen. Deren Ausrichtung reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Raum- und Sozialwissenschaften bis zu den Geisteswissenschaften. Leibniz-Institute bearbeiten gesellschaftlich, ökonomisch und ökologisch relevante Fragestellungen. Sie betreiben erkenntnis- und anwendungsorientierte Grundlagenforschung. Sie unterhalten wissenschaftliche Infrastrukturen und bieten forschungsbasierte Dienstleistungen an. Die Leibniz-Gemeinschaft setzt Schwerpunkte im Wissenstransfer in Richtung Politik, Wissenschaft, Wirtschaft und Öffentlichkeit. Leibniz-Institute pflegen intensive Kooperationen mit den Hochschulen ‑ u.a. in Form der WissenschaftsCampi ‑, mit der Industrie und anderen Partnern im In- und Ausland. Sie unterliegen einem maßstabsetzenden transparenten und unabhängigen Begutachtungsverfahren. Aufgrund ihrer gesamtstaatlichen Bedeutung fördern Bund und Länder die Institute der Leibniz-Gemeinschaft gemeinsam. Die Leibniz-Institute beschäftigen rund 17.200 Personen, darunter 8.200 Wissenschaftlerinnen und Wissenschaftler. Der Gesamtetat der Institute liegt bei 1,5 Milliarden Euro. Näheres unter http://www.leibniz-gemeinschaft.de.

Weitere Informationen:

http://www.fli-leibniz.de - Homepage Leibniz-Institut für Altersforschung - Fritz-Lipmann-Institut (FLI) Jena

Dr. Kerstin Wagner | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie