Vorgegaukelte Zellwand

Ungefähr 1,6 Mio. Menschen weltweit sterben jährlich an den Folgen einer Infektion durch Pneumokokken, die schwere Erkrankungen wie Lungen-, Hirnhaut- und Mittelohrentzündungen verursachen. Vor allem kleine Kinder und Ältere sind gefährdet.

Nur gegen wenige Pneumokokkentypen gibt es bisher wirksame Impfungen und die zunehmende Antibiotikaresistenz der Erreger erschwert eine Behandlung. Forscher um Jesús M. Sanz von der Universität Miguel Hernandez (Elche, Spanien) und Maarten Merkx von der Technischen Universität Eindhoven (Niederlande) präsentieren nun einen vielversprechenden neuen Ausgangspunkt für die Entwicklung von Wirkstoffen gegen Pneumokokken.

Wie sie in der Zeitschrift Angewandte Chemie berichten, ahmen die Wissenschaftler die Cholin-Architektur der Pneumokokken-Zellwand nach. So gelang es ihnen, an Cholin bindende Proteine effektiv abzufangen, die für die Infektiosität der Pneumokokken eine wichtige Rolle spielen.

Die Zellwände von Pneumokokken enthalten spezielle Polymere, so genannte Teichonsäuren, die mit Phosphocholingruppen bestückt sind und auf diese Weise eine charakteristische Cholin-Architektur auf der Zellwand hervorrufen. Die Choline dienen als Andockstellen für eine Reihe spezieller Proteine, die an wichtigen Prozessen wie der Zellwandteilung, der Freisetzung bakterieller Toxine und der Haftung am infizierten Geweben beteiligt sind. Solche „cholinbindenden Proteine“ (CBP) enthalten Domänen mit mehreren benachbarten Cholinbindestellen. Das Protein LytA hat beispielsweise eine Domäne mit vier Cholinbindestellen.

Wird Cholin einer Pneumokokken-Kultur zugegeben, besetzen die Moleküle die Cholinbindestellen der CBP, sodass diese nicht mehr an die Zellwand der Pneumokokken andocken können. Die Pneumokokken vermehren sich zwar noch, aber die einzelnen Zellen können sich nicht mehr voneinander trennen, es entstehen lange Ketten aus verbundenen Zellen. Außerdem wird die für Pneumokokken typische Selbstauflösung (Autolyse) am Ende ihres Lebenszyklus, bei der Toxine frei werden, gestoppt.

Cholin ist allerdings nicht als Medikament geeignet, da die wirksame Dosis viel zu hoch liegt. Das Forscherteam entwickelte nun die Basis für einen Wirkstoff, der wesentlich stärker an die CBP bindet als einzelne Cholinmoleküle. Der Trick: Der Wirkstoff ahmt die Cholin-Architektur der Zellwand nach, indem er mehrere Cholin-Gruppen präsentiert. Als „Gerüst“ für die Montage der Cholingruppen wählten die Forscher Dendrimere, baumartig verästelte Moleküle, an deren „Zweigenden“ sie die Cholingruppen knüpften. Ihre Cholin-Enden können mehrere Cholinbindestellen der CBP gleichzeitig absättigen. Die Dendrimer-Gerüste sind flexibel genug, um sich den entsprechenden räumlichen Erfordernissen anzupassen. Die notwendige Dosis dieser CBP-Hemmer liegt in einem Bereich, der für Pharmaka geeignet wäre.

Autor: Jesús M. Sanz, Universidad Miguel Hernandez, Elche (Spain), http://ibmc.umh.es/jmsanz/reach_en.html

Angewandte Chemie 2009, 121, No. 5, 966-969, doi: 10.1002/ange.200803664

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Media Contact

Dr. Renate Hoer GDCh

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer