Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von Hefezellen lernen: Neue Ansätze für die Therapie von Parkinson

06.09.2016

Göttinger Wissenschaftler des Exzellenzclusters CNMPB der Universitätsmedizin Göttingen gewinnen neue Einsichten in die Pathologie von Morbus Parkinson. Veröffentlicht in der Fachzeitschrift PLOS GENETICS.

Hefezellen gehören zu den ältesten Kulturbegleitern des Menschen für die Herstellung von Brot, Bier oder Wein. Doch Hefezellen können auch helfen, etwas Neues über komplexe menschliche Krankheiten zu lernen. Göttinger Grundlagenforscher nutzten Hefezellen als Referenzzellen für das Studium zellulärer Mechanismen bei Morbus Parkinson – und haben neue Erkenntnisse über krankmachende Prozesse gewonnen.


Gesunde Hefezellen (o.) u. kranke Hefezellen mit Ansammlungen von α-Synuklein-Aggregaten (grün). Mitochondrien (rot) liegen in kranken Z. stark fragmentiert vor, wenn der protektive Faktor Yhb1 fehlt

Quelle: Braus / CNMPB

Wissenschaftlern des Exzellenzclusters und DFG-Forschungszentrums für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns (CNMPB) der Universitätsmedizin Göttingen (UMG), ist es gelungen, einen komplexen Mechanismus näher zu analysieren, der für die Zellsterblichkeit bei der Parkinson Erkrankung eine wesentliche Rolle spielt.

Zudem gelang es ihnen, einen Faktor zu identifizieren, der eine neuroprotektive Wirkung auf menschliche Zellen ausübt, also die Nervenzellen vor vorzeitigem Absterben schützt. Die Ergebnisse sind in der Fachzeitschrift PLOS Genetics veröffentlicht. Sie liefern neue, vielversprechende Ansätze für die Therapie der Parkinson’schen Erkrankung.

Originalveröffentlichung: Kleinknecht A, Popova B, Lázaro DF, Pinho R, Valerius O, Outeiro TF, Braus GH (2016) C-terminal Tyrosine Residue Modifications Modulate the Protective Phosphorylation of Serine129 of a α-Synuclein in a Yeast Model of Parkinson’s Disease. PLOS GENETICS, 12(6): e1006098.
doi:10.1371/journal.pgen.1006098

HINTERGRUNDINFORMATION

Die Parkinson Krankheit ist eine sehr häufig auftretende neurodegenerative Erkrankung, die etwa ein Prozent der Bevölkerung über 60 Jahre betrifft. Ursächlich für die Entstehung von Morbus Parkinson ist das Absterben von Nervenzellen in der Substantia nigra, einer speziellen Region des Mittelhirns. Besondere Hoffnung liegt daher auf der Entwicklung geeigneter Therapieansätze, die die Sterblichkeit von Nervenzellen herabsetzen.

Die betroffenen Nervenzellen weisen große Ansammlungen von Aggregaten des alpha-Synuklein-Proteins (α-Synuklein) auf. Die auch als Lewy-Körperchen bezeichneten Strukturen entstehen aus sogenannten α-Synuklein-Oligomeren, kleineren Vorstufen, die eine toxische Wirkung auf die Nervenzellen entfalten. Wie der zellschädigende (toxische) Effekt von α-Synuklein gezielt beeinflusst werden kann, ist Ansatz vieler Studien.

Die Funktionalität von Proteinen kann nach ihrer Bildung in Zellen durch nachträgliche strukturelle Veränderungen beeinträchtigt werden. Zu diesen sogenannten „posttranslationalen Modifikationen“ gehört unter anderem die Anheftung verschiedener Nitro- (Nitration) oder Phosphatgruppen (Phosphorylierung) an bestimmte Aminosäuren, den Bausteinen der Proteine. Bereits bekannt ist, dass die Phosphorylierung des α-Synuklein-Proteins an die Aminosäure Serin an Position 129 (Serin129) einen neuroprotektiven Effekt für Zellen hat. Dieser beruht auf einer deutlich reduzierten Bildung von Aggregaten des Proteins, deren Abbau und somit auf einer verminderten Zellsterblichkeit.

In ihrer jüngst veröffentlichten Studie beschäftigten sich die Göttinger Wissenschaftler mit der Frage, ob und inwiefern diese Modifikation in Kombination mit anderen posttranslationalen Veränderungen die Toxizität von α-Synuklein beeinflussen kann. Als Modellzelle nutzten die Göttinger Wissenschaftler Hefezellen, die in der Lage sind, menschliches α-Synuklein-Protein zu produzieren.

ERGEBNISSE IM DETAIL

Die Wissenschaftler konnten erstmals zeigen, dass die Nitration der Aminosäure Tyrosin an vier bestimmten Positionen des α-Synukleins maßgeblich zu erhöhter Zellsterblichkeit beiträgt. Diese Form der Modifizierung kann eine Folge von oxidativem Stress sein und ist ein typisches Merkmal neurodegenerativer Erkrankungen. Im von den Göttinger Forschern verwendeten Parkinsonmodell fördert die Tyrosin-Nitration die Bildung toxischer α-Synuklein-Aggregate und die Fragmentierung von Mitochondrien, den Kraftwerken der Zelle. Dies führt zu einer starken Verminderung des Zellwachstums. Darüber hinaus hebt die Nitration der Tyrosine den schützenden Effekt der Phosphorylierung von Serin129 auf, in deren direkter Umgebung sie liegen.

Die Nitration fördert aber auch die Interaktion von α-Synuklein-Molekülen. Die dabei entstehenden stabilen α-Synuklein-Dimere üben wiederum einen schützenden Effekt aus und setzten die Sterblichkeit der Zellen herab. Interessanterweise kann der positive Effekt der Dimerbildung die neurotoxische Wirkung der Nitration nur mindern, nicht aber ausgleichen. Ein weiterer Beleg für das komplexe Zusammenspiel der verschiedenen Modifizierungen: Liegt die Aminosäure Tyrosin an Position 133 des α-Synukleins nicht in modifizierter Form vor, wird auch die Phosphorylierung von Serin129 unterbunden. Dies wiederum hat einen schützenden Effekt auf die Zellen, fördert den Abbau der toxischen α-Synuklein-Aggregate und setzt so die Zellsterblichkeit herab.

Besonders interessant: Die Forscher konnten im Hefezellmodell einen Faktor identifizieren, der die Zellen vor dem Absterben schützt. Yhb1 verhindert die Anheftung von Nitrogruppen an α-Synuklein, während die Dimerbildung nicht betroffen ist. Strukturanalysen bestätigten, dass in menschlichen Zellen ein verwandtes Protein existiert. Neuroglobin (NGB) ist in der Lage, genau wie Yhb1, eine Nervenzellen-schützende Wirkung zu entfalten, indem es die Aggregation von α-Synuklein verhindert.

„Auf Grundlage dieser neuen Erkenntnisse über die molekularen Prozesse, die für die zelltoxische Wirkung von α-Synuklein verantwortlich sind, kann der Faktor Neuroglobin als ein vielversprechender Ansatzpunkt für die Entwicklung von Behandlungsstrategien der Parkinson Erkrankung betrachtet werden”, sagt Koautorin der Studie Dr. Blagovesta Popova, Institut für Mikrobiologie und Genetik der Universität Göttingen.

BILDUNTERSCHRIFT: Gesunde Hefezellen (oben) und kranke Hefezellen (unten) mit Ansammlungen von α-Synuklein-Aggregaten (grün). Die Mitochondrien (rot), verantwortlich für die Zellatmung, liegen in den kranken Zellen stark fragmentiert vor, wenn der protektive Faktor Yhb1 fehlt (unten), wie die fluo-reszenzmikroskopische Analyse zeigt. Quelle: Braus / CNMPB.

WEITERE INFORMATIONEN
Georg-August-Universität Göttingen
Institut für Molekulare Mikrobiologie und Genetik und
Göttingen Center for Molecular Biosciences (GZMB)
Prof. Dr. Gerhard H. Braus
Telefon 0551 / 39-7082, gbraus@gwdg.de
Grisebachstr. 8, 37077 Göttingen
http://www.uni-goettingen.de/en/424383.html

CNMPB – Zentrum für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns Exzellenzcluster 171 – DFG-Forschungszentrum 103
Wissenschaftliche Koordination, Presse & Öffentlichkeitsarbeit
Dr. Heike Conrad, Telefon 0551 / 39-7065, heike.conrad@med.uni-goettingen.de
Humboldtallee 23, 37073 Göttingen

www.cnmpb.de 

Stefan Weller | Universitätsmedizin Göttingen - Georg-August-Universität

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise