Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von Hefezellen lernen: Neue Ansätze für die Therapie von Parkinson

06.09.2016

Göttinger Wissenschaftler des Exzellenzclusters CNMPB der Universitätsmedizin Göttingen gewinnen neue Einsichten in die Pathologie von Morbus Parkinson. Veröffentlicht in der Fachzeitschrift PLOS GENETICS.

Hefezellen gehören zu den ältesten Kulturbegleitern des Menschen für die Herstellung von Brot, Bier oder Wein. Doch Hefezellen können auch helfen, etwas Neues über komplexe menschliche Krankheiten zu lernen. Göttinger Grundlagenforscher nutzten Hefezellen als Referenzzellen für das Studium zellulärer Mechanismen bei Morbus Parkinson – und haben neue Erkenntnisse über krankmachende Prozesse gewonnen.


Gesunde Hefezellen (o.) u. kranke Hefezellen mit Ansammlungen von α-Synuklein-Aggregaten (grün). Mitochondrien (rot) liegen in kranken Z. stark fragmentiert vor, wenn der protektive Faktor Yhb1 fehlt

Quelle: Braus / CNMPB

Wissenschaftlern des Exzellenzclusters und DFG-Forschungszentrums für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns (CNMPB) der Universitätsmedizin Göttingen (UMG), ist es gelungen, einen komplexen Mechanismus näher zu analysieren, der für die Zellsterblichkeit bei der Parkinson Erkrankung eine wesentliche Rolle spielt.

Zudem gelang es ihnen, einen Faktor zu identifizieren, der eine neuroprotektive Wirkung auf menschliche Zellen ausübt, also die Nervenzellen vor vorzeitigem Absterben schützt. Die Ergebnisse sind in der Fachzeitschrift PLOS Genetics veröffentlicht. Sie liefern neue, vielversprechende Ansätze für die Therapie der Parkinson’schen Erkrankung.

Originalveröffentlichung: Kleinknecht A, Popova B, Lázaro DF, Pinho R, Valerius O, Outeiro TF, Braus GH (2016) C-terminal Tyrosine Residue Modifications Modulate the Protective Phosphorylation of Serine129 of a α-Synuclein in a Yeast Model of Parkinson’s Disease. PLOS GENETICS, 12(6): e1006098.
doi:10.1371/journal.pgen.1006098

HINTERGRUNDINFORMATION

Die Parkinson Krankheit ist eine sehr häufig auftretende neurodegenerative Erkrankung, die etwa ein Prozent der Bevölkerung über 60 Jahre betrifft. Ursächlich für die Entstehung von Morbus Parkinson ist das Absterben von Nervenzellen in der Substantia nigra, einer speziellen Region des Mittelhirns. Besondere Hoffnung liegt daher auf der Entwicklung geeigneter Therapieansätze, die die Sterblichkeit von Nervenzellen herabsetzen.

Die betroffenen Nervenzellen weisen große Ansammlungen von Aggregaten des alpha-Synuklein-Proteins (α-Synuklein) auf. Die auch als Lewy-Körperchen bezeichneten Strukturen entstehen aus sogenannten α-Synuklein-Oligomeren, kleineren Vorstufen, die eine toxische Wirkung auf die Nervenzellen entfalten. Wie der zellschädigende (toxische) Effekt von α-Synuklein gezielt beeinflusst werden kann, ist Ansatz vieler Studien.

Die Funktionalität von Proteinen kann nach ihrer Bildung in Zellen durch nachträgliche strukturelle Veränderungen beeinträchtigt werden. Zu diesen sogenannten „posttranslationalen Modifikationen“ gehört unter anderem die Anheftung verschiedener Nitro- (Nitration) oder Phosphatgruppen (Phosphorylierung) an bestimmte Aminosäuren, den Bausteinen der Proteine. Bereits bekannt ist, dass die Phosphorylierung des α-Synuklein-Proteins an die Aminosäure Serin an Position 129 (Serin129) einen neuroprotektiven Effekt für Zellen hat. Dieser beruht auf einer deutlich reduzierten Bildung von Aggregaten des Proteins, deren Abbau und somit auf einer verminderten Zellsterblichkeit.

In ihrer jüngst veröffentlichten Studie beschäftigten sich die Göttinger Wissenschaftler mit der Frage, ob und inwiefern diese Modifikation in Kombination mit anderen posttranslationalen Veränderungen die Toxizität von α-Synuklein beeinflussen kann. Als Modellzelle nutzten die Göttinger Wissenschaftler Hefezellen, die in der Lage sind, menschliches α-Synuklein-Protein zu produzieren.

ERGEBNISSE IM DETAIL

Die Wissenschaftler konnten erstmals zeigen, dass die Nitration der Aminosäure Tyrosin an vier bestimmten Positionen des α-Synukleins maßgeblich zu erhöhter Zellsterblichkeit beiträgt. Diese Form der Modifizierung kann eine Folge von oxidativem Stress sein und ist ein typisches Merkmal neurodegenerativer Erkrankungen. Im von den Göttinger Forschern verwendeten Parkinsonmodell fördert die Tyrosin-Nitration die Bildung toxischer α-Synuklein-Aggregate und die Fragmentierung von Mitochondrien, den Kraftwerken der Zelle. Dies führt zu einer starken Verminderung des Zellwachstums. Darüber hinaus hebt die Nitration der Tyrosine den schützenden Effekt der Phosphorylierung von Serin129 auf, in deren direkter Umgebung sie liegen.

Die Nitration fördert aber auch die Interaktion von α-Synuklein-Molekülen. Die dabei entstehenden stabilen α-Synuklein-Dimere üben wiederum einen schützenden Effekt aus und setzten die Sterblichkeit der Zellen herab. Interessanterweise kann der positive Effekt der Dimerbildung die neurotoxische Wirkung der Nitration nur mindern, nicht aber ausgleichen. Ein weiterer Beleg für das komplexe Zusammenspiel der verschiedenen Modifizierungen: Liegt die Aminosäure Tyrosin an Position 133 des α-Synukleins nicht in modifizierter Form vor, wird auch die Phosphorylierung von Serin129 unterbunden. Dies wiederum hat einen schützenden Effekt auf die Zellen, fördert den Abbau der toxischen α-Synuklein-Aggregate und setzt so die Zellsterblichkeit herab.

Besonders interessant: Die Forscher konnten im Hefezellmodell einen Faktor identifizieren, der die Zellen vor dem Absterben schützt. Yhb1 verhindert die Anheftung von Nitrogruppen an α-Synuklein, während die Dimerbildung nicht betroffen ist. Strukturanalysen bestätigten, dass in menschlichen Zellen ein verwandtes Protein existiert. Neuroglobin (NGB) ist in der Lage, genau wie Yhb1, eine Nervenzellen-schützende Wirkung zu entfalten, indem es die Aggregation von α-Synuklein verhindert.

„Auf Grundlage dieser neuen Erkenntnisse über die molekularen Prozesse, die für die zelltoxische Wirkung von α-Synuklein verantwortlich sind, kann der Faktor Neuroglobin als ein vielversprechender Ansatzpunkt für die Entwicklung von Behandlungsstrategien der Parkinson Erkrankung betrachtet werden”, sagt Koautorin der Studie Dr. Blagovesta Popova, Institut für Mikrobiologie und Genetik der Universität Göttingen.

BILDUNTERSCHRIFT: Gesunde Hefezellen (oben) und kranke Hefezellen (unten) mit Ansammlungen von α-Synuklein-Aggregaten (grün). Die Mitochondrien (rot), verantwortlich für die Zellatmung, liegen in den kranken Zellen stark fragmentiert vor, wenn der protektive Faktor Yhb1 fehlt (unten), wie die fluo-reszenzmikroskopische Analyse zeigt. Quelle: Braus / CNMPB.

WEITERE INFORMATIONEN
Georg-August-Universität Göttingen
Institut für Molekulare Mikrobiologie und Genetik und
Göttingen Center for Molecular Biosciences (GZMB)
Prof. Dr. Gerhard H. Braus
Telefon 0551 / 39-7082, gbraus@gwdg.de
Grisebachstr. 8, 37077 Göttingen
http://www.uni-goettingen.de/en/424383.html

CNMPB – Zentrum für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns Exzellenzcluster 171 – DFG-Forschungszentrum 103
Wissenschaftliche Koordination, Presse & Öffentlichkeitsarbeit
Dr. Heike Conrad, Telefon 0551 / 39-7065, heike.conrad@med.uni-goettingen.de
Humboldtallee 23, 37073 Göttingen

www.cnmpb.de 

Stefan Weller | Universitätsmedizin Göttingen - Georg-August-Universität

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics