Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von Hefe für Demenzerkrankungen lernen

22.02.2018

Biologie: Veröffentlichung in PNAS

Biophysiker der Heinrich-Heine-Universität Düsseldorf (HHU) und des Forschungszentrums Jülich (FZJ) untersuchten zusammen mit japanischen Kollegen die Faltung bestimmter Proteine bei Hefepilzen. Sie fanden ähnliche Mechanismen wie bei sogenannten Prionen, also solchen Eiweißen, die fehlgefaltet sind und die neurodegenerative Erkrankungen auslösen. Mit den Prionen in Hefen gewannen die Forscher neue Erkenntnisse über die Entstehung der schädlichen Eiweiße. Sie veröffentlichten ihre Ergebnisse in der Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS).


Schematische Darstellung von Amyloid-Fibrillen mit parallel verlaufenden beta-Faltblättern, wie sie auch in dem untersuchten Prion vorliegen.

HHU / Henrike Heise

Proteine sind zentrale Bausteine jedes lebenden Organismus, sie dienen sowohl als Strukturmaterial als auch als Botenstoffe im Körper. Diese Proteine setzen sich ihrerseits aus einzelnen Aminosäurebausteinen zusammen. Der Bauplan, nach dem der Körper sie herstellt, ist im genetischen Code hinterlegt.

Die Proteine, die zum Teil aus hunderten bis tausenden Aminosäuren bestehen, sind komplex gefaltete dreidimensionale Gebilde. Ihre Struktur ist von entscheidender Bedeutung für ihre Funktion. Kommt es zu Faltungsfehlern, verlieren die Proteine nicht nur ihre biologische Funktion; sie können unter anderem auch neurodegenerative Erkrankungen verursachen.

Für die Rinderkrankheit BSE beziehungsweise die Creutzfeld-Jakob-Erkrankung beim Menschen sind Prionen verantwortlich, Aggregate aus fehlgefalteten körpereigenen Proteinen. Diese sind in der Lage, ihre falsche Struktur auf andere Proteine zu übertragen und sind damit ansteckend. Prionen können Nervengewebe zerstören.

Auch in Hefen gibt es Proteine, die – wie bei den Krankheitserregern beim Tier und Menschen – infektiöse Zusammenlagerungen, Prionen, bilden können. Hefen eignen sich deshalb gut als Studienobjekt, um zentrale Mechanismen bei den humanen Krankheiten zu untersuchen. Die Arbeitsgruppe um Prof. Dr. Henrike Heise vom Institut für Physikalische Biologie der HHU und vom Institute for Complex Systems – Strukturbiochemie des FZJ untersuchte zusammen mit Kollegen des japanischen RIKEN-Forschungsinstituts mit Hilfe der Kernspinresonanztomografie die Strukturen verschiedener Stämme der Prionen, die vom N-terminalen Fragment Sup35NM des Hefeprions Sup35p gebildet werden. Vor allem wollten die Wissenschaftler klären, welchen Einfluss Umweltbedingungen oder genetische Faktoren auf die Struktur der Prionen und damit auf ihre spezifischen Eigenschaften wie Infektiosität haben.

Nachdem bereits in früheren Versuchen gezeigt worden war, dass thermodynamische Faktoren wie die Umgebungstemperatur zu verschiedenen Prionenstämmen mit unterschiedlichen Strukturen und Eigenschaften führen können, untersuchten die Forscherinnen und Forscher in der aktuellen Studie eine Punktmutation, in der eine einzige Aminosäure im Zentrum des fehlgefalteten Bereiches – des Amyloid-Kernbereiches – durch eine andere ersetzt ist.

Dieser einzelne Aminosäureaustausch führt dazu, dass das mutierte Protein zwar auch Prionen bilden kann, die sich in ihren Eigenschaften allerdings deutlich von den Prionen des ursprünglichen „Wildtyp“-Proteins unterscheiden. Unabhängige Untersuchungen durch Proteinverdau-Experimente – Protein-abbauende Enzyme „verdauen“ dabei alle nicht zum Amyloidkern gehörenden Bereiche, so dass nur der Kernbereich zurückbleibt – sowie durch Festkörper-Kernspinresonanzspektroskopie zeigten, dass der Amyloid-Kernbereich der Prionen, die vom mutierten Sup35NM-Protein gebildet werden, in einer Region liegt, die im Wildtyp-Prion nicht zum Amyloid-Kernbereich gehört. Weiterhin fand man, dass diese Proteinmutante bereits im ungefalteten Zustand weniger kompakt ist, was letztendlich Auswirkungen auf die Zusammenlagerung der Proteine hat.

Dies sind wichtige Erkenntnisse für das Verständnis der Bildung von fehlerhaften und krankmachenden Proteinstrukturen. Auf dieser Grundlage kann es auch möglich sein, neue Therapieansätze zu finden. Neben der Creutzfeld-Jakob-Krankheit ist dies auch für andere neurologische Erkrankungen wie die Alzheimer-Demenz oder Parkinson relevant, da auch diese von fehlerhaft aufgebauten Proteinen verursacht werden, die sich verklumpen und in der Folge Nervenzellen schädigen können.

Originalveröffentlichung

Yumiko Ohhashi, Yoshiki Yamaguchi, Hiroshi Kurahashi, Yuji Kamatari, Shinju Sugiyama, Boran Uluca, Timo Piechatzek, Yusuke Komi, Toshinobu Shida, Henrik Müller, Shinya Hanashima, Henrike Heise, Kazuo Kuwata, Motomasa Tanaka, Molecular basis for diversification of yeast prion strain conformation, PNAS, 21. Februar 2018

DOI: 10.1073/pnas.1715483115
Online: http://www.pnas.org/content/early/2018/02/20/1715483115

Dr.rer.nat. Arne Claussen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.hhu.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Elektrifizierendes Bettgeflüster von Messerfischen in freier Wildbahn belauscht
28.05.2018 | Eberhard Karls Universität Tübingen

nachricht Krebsdiagnostik: Pinkeln statt Piksen?
28.05.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: CEBIT 2018: DFKI präsentiert innovatives Exoskelett für die robotergestützte Rehabilitation

Robotische Systeme spielen für die medizinische Rehabilitation eine immer größere Rolle. Auf der CEBIT-Expo vom 12. bis 15. Juni 2018 in Hannover‎ stellt das Robotics Innovation Center des Deutschen Forschungszentrums für Künstliche Intelligenz (DFKI) in Halle 27, Stand F62, das Projekt Recupera REHA vor. Darin gelang dem von Prof. Dr. Dr. h.c. Frank Kirchner geleiteten DFKI-Forschungsbereich ein Durchbruch auf dem Gebiet der Rehabilitationsrobotik: Gemeinsam mit der rehaworks GmbH entwickelte es ein mobiles Exoskelett für die Oberkörperassistenz speziell zur robotergestützten Therapie nach einem Schlaganfall.

Über drei Jahre arbeitete ein interdisziplinäres Forscherteam des DFKI an einem tragbaren Ganzkörper-Exoskelett, das der äußeren Unterstützung des menschlichen...

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

12. COMPAMED Frühjahrsforum: Innovative Herstellungsverfahren moderner Implantate

28.05.2018 | Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

CEBIT 2018: DFKI präsentiert innovatives Exoskelett für die robotergestützte Rehabilitation

28.05.2018 | CeBIT 2017

IAB-Arbeitsmarktbarometer sinkt zum zweiten Mal in Folge

28.05.2018 | Wirtschaft Finanzen

Elektrifizierendes Bettgeflüster von Messerfischen in freier Wildbahn belauscht

28.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics